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Abstract: In this paper, we present a new modelling method to create 3D models. First, character- 14 

istic cross section curves are generated and approximated by generalized elliptic curves. Then, a 15 

vector-valued sixth-order partial differential equation is proposed, and its closed form solution is 16 

derived to create PDE surface patches from cross section curves where two adjacent PDE-surface 17 

patches are automatically stitched together. With the approach presented in this paper, 𝐶2 conti- 18 

nuity between adjacent surface patches is well maintained. Since surface creation of the model is 19 

transformed into generation of cross sectional curves and few undetermined constants are re- 20 

quired to describe cross sectional curves accurately, the proposed approach can save manual op- 21 

erations, reduce information storage, and generate 3D models quickly. 22 

Keywords: 3D modelling; generalized elliptic curves; 𝐶2 continuity; PDE-based surface generation; 23 

sixth-order PDE, analytical mathematical expressions 24 

 25 

1. Introduction 26 

3D modelling is an important and widely used step in the production pipeline for 27 

film and game industries. Using partial differential equation (PDE) surface patches to 28 

create 3D models has the advantages of representing complicated polygon models with 29 

fewer design variables and automatically achieving required continuity to avoid manual 30 

operations to stitch two adjacent surface patches together. Owing to their analytical 31 

mathematical expressions, this approach can also facilitate other applications such as 32 

levels of detail for multi-resolution models and deep learning-based tasks for reducing 33 

processing time. 34 

In this paper, we use this partial differential equation method to create 𝐶2 35 

continuous 3D models from generalized elliptic curves. In order to generate a 36 

complicated 3D model, first we create a set of cross section curves. Each of the cross- 37 

section curves is approximated by a generalized elliptic curve whose analytical 38 

mathematical expression is in the form of Fouier series. With the help of the analytical 39 

mathematical expression of generalized elliptic curves, a very complicated cross section 40 

curve can be defined with fewer design variables, which decreases information storage, 41 

speeds up network transmission, and facilitates consequent geometric processing. The 42 

design variables involved in generalized elliptic curves are used as the input of 𝐶2 43 

continuous PDE surface creation, which is based on the accurate closed form solution to 44 

a vector-valued sixth-order PDE. All created PDE surface patches are automatically 45 

connected together to obtain a 𝐶2  continuous 3D model. Since all the undetermined 46 
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constants in the closed form solution are determined by the design variables involved in 47 

the analytical mathematical expression of generalized elliptic curves, the proposed PDE- 48 

based modelling method also has the advantage of few design variables.   49 

The remaining parts of this paper are organized as follows: In Section 2, we review 50 

the related work in the area. Then, an overview of the algorithm is given in Section 3. It 51 

consists of two steps: curve fitting, and creation of 𝐶2  continuous PDE surfaces. A 52 

number of examples and results are given in Section 4. Conclusions and future work are 53 

discussed in Section 5. 54 

2. Related Work 55 

There are many different approaches for 3D modeling (see Figure 1). Roughly 56 

speaking, they can be classified as pure-geometric modeling and physics-based 57 

modeling techniques. Traditional pure-geometric modeling methods such as polygon 58 

modeling [1], NURBS modeling [2, 3] and subdivision modeling [4], are widely used in 59 

commercial graphics packages. Polygon modeling and subdivision modeling 60 

approaches can generate detailed or branching models; they are suitable for linear 61 

shapes and rigid objects. However, it is hard to use a small number of polygons to 62 

accurately represent smooth surfaces. On the other hand, NURBS modeling could use a 63 

few control points to create smooth curved objects. The disadvantage is the continuity 64 

problem between different patches, which typically require a lot of manual work to 65 

stitch adjacent patches together.  66 

 67 

Figure 1. Comparison of different digital 3D modeling methods. 68 

Physics-based modeling [5] considers the basic physics of surface deformation. 69 

Compared with polygon modeling and NURBS modeling, it has the ability to create a 70 

more realistic look. Physics-based modeling methods include finite element method [6], 71 

finite difference method [7], finite volume method [8], mass-spring systems [9], meshless 72 

method [10], coupled particle systems [11] and simplified deformation models for modal 73 

analysis [12]. 74 

PDE geometric modeling was pioneered by Bloor and Wilson [13] in computer 75 

graphics three decades ago. Since then, PDE methods have been developed to tackle 76 

various geometric modeling problems, such as surface modeling [14, 15], surface design 77 

[16] and solid modeling [17], and used to represent high-speed train head models [29] 78 

and optimize aerodynamic performance of high speed train heads [30]. One major 79 

advantage is that the differential operator of PDE can generate smooth surfaces [18]. 80 

Another advantage of using the PDE approach is that PDE surfaces can be generated by 81 

intuitive manipulation of the relatively small set of boundary conditions for PDE [31], it 82 

can transform geometric modeling problems into boundary value PDE problems. 83 
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Therefore, the PDE modeling method can obtain continuous smooth surfaces without 84 

manual work to stitch adjacent patches together. 85 

Elliptic cross sections have been used in sweeping surfaces to describe human 86 

shapes [19]. Surface generation from cross-sections is used in many applications, 87 

especially in medical visualization. Some illustrative examples include human body 3D 88 

visualization with 2D computed tomography (CT) slices [20] or magnetic resonance 89 

imaging (MRI) data [21]. Different methods have been developed to reconstruct 3D 90 

models or surfaces from cross sections or point clouds [22-28]. A method for modeling 91 

and deforming human arm and leg by using cross section ellipses and displacement 92 

diagram is proposed in [22]. Another method dealing with curve networks of arbitrary 93 

shape and arbitrary topology with arbitrary direction about non-parallel cross sections is 94 

reported in [23]. Barton et al. [26] presented an approach to detect if a surface can be 95 

represented by sweeping of a planar profile or not. It shows applications in functional 96 

architectural design. Kovács and Várady [27] proposed an algorithm to detect and re- 97 

construct the profile curves from the property that they are principal curvature lines. 98 

Barton et al. [28] studied the evolution of arc spline curve which constitutes an effective 99 

discretization of smooth curves. Recently an analytical mathematical representation of 100 

cross section curves including generalized ellipses, generalized elliptic curves and 101 

composite generalized elliptic segments was proposed and surfaces were reconstructed 102 

from the curves in [24]. 103 

3. Algorithm overview 104 

Figure 2 shows the overall algorithm of our proposed approach. It consists of two  105 

steps: curve fitting and creation of 𝐶2 continuous PDE surfaces.  106 

Before curve fitting, cross section curves of 3D models are created. Four different 107 

methods can be used to generate cross section curves. The first method is to manually 108 

draw cross section curves by artists or modellers. The second method is to extract the 109 

contour of computed tomography slices. The third method is to slice 3D surface models 110 

and obtain 2D cross section curves. And the last method is to reconstruct cross section 111 

curves from point clouds. 112 

113 
Figure 2. Overall proposed algorithm.  114 

 115 

In the first step, i. e., curve fitting, we use generalized elliptic curves to 116 

approximate and reconstruct each of cross section curves. Then these cross section 117 

curves are changed into an analytical mathematical expression with few undetermined 118 

constants. We call it a generalized elliptic curve. Through this simple procedure, we can 119 

get some smooth curves as well as achieve an adequate trade-off between the approxi- 120 
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mation errors and the amount of data required to approximate cross section curves. It 121 

works well on complicated curve-based models with smooth cross-sections. In other 122 

words, the ground truth closed curves are defined by few coefficients involved in the 123 

mathematical expression of generalized elliptic curves, which will be used in the 124 

following processing.  125 

In the second step, 𝐶2  continuous PDE surface patches are constructed from 126 

generalized elliptic curves obtained in the previous step. A vector-valued sixth-order 127 

partial differential equation is proposed for this purpose and an accurate closed form 128 

solution is obtained from the vector-valued sixth-order partial differential equation, 129 

which is used to interpolate the generalized elliptic curves. The interpolation operation 130 

generates a PDE surface patch. Since two adjacent PDE surface patches share three same 131 

cross section curves or share the same curve, first partial derivatives, and the second 132 

partial derivatives on their joint boundary, 𝐶2  continuity between two adjacent PDE 133 

surface patches is naturally achieved. 134 

3.1. Curve fitting  135 

Figure 3 shows the first step of the algorithm. In the figure, the ground truth curves 136 

are highlighted in blue, the generalied elliptic curves defined by Eq. (1) below are in red, 137 

and 𝑛 indicates the number of Fourier series terms in Eq. (1). First, we use cross-section 138 

curves of a 3D model as input. For each ground truth cross-section curve, we use a 139 

generalized elliptic curve to fit it. In doing so, the ground truth curves are defined by 140 

few coefficients involved in the mathematical expression of the generalized elliptic 141 

curves.  142 

Table 1. Errors of curve fitting 143 

n 3 5 7 10 

ErM 0.06481381 0.04435838 0.03104235 0.02185651 

ErA 0.022548659 0.01327854 0.01153644 0.00745387 

 144 

 145 

Figure 3. Curve fitting example. The ground truth curves are shown in blue and fitted generalized 146 
elliptic curves are in red.    147 

The figure above shows the blue ground truth curves are approximated by the red 148 

generalized elliptic curves very well and the errors between them are very small. When 149 

𝑛 = 1, large differences between the ground truth curves and the generalized elliptic 150 
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curves can be seen. When 𝑛 increases, the differences become smaller and smaller. When 151 

𝑛 = 10, visiable differences between the ground truth curves and the generalized elliptic 152 

curves disappear.  153 

Good fitting accuracy is also demonstrated by the data given in Table 1. When 𝑛 = 154 

1, the average and maximum errors are ?? and ??, respectively. When 𝑛 is raised to ??, 155 

they are redcued to ?? and ??, which are small. When the terms are further increased, the 156 

errors will be reduced further. They indicate that by using different terms in Eq. (1), the 157 

fitting accuracy can be controlled and ground truth curves can be approximated 158 

accurately by generalized elliptic curves.   159 

Because there is no sharp points in organic shapes like a human body, through this 160 

process we can get smooth curves and eliminate input sharp points if they exist. By do- 161 

ing so, we can also fix errors in artist’s drawn models and improve the final results. The 162 

mathematical expression of generalized elliptic curves can be written as  163 

𝑥(𝑣) = 𝑎𝑥0 + ∑ (𝑎𝑥𝑛
𝑁
𝑛=1 𝑐𝑜𝑠 𝑛 𝑣 + 𝑏𝑥𝑛 𝑠𝑖𝑛 𝑛 𝑣)      164 

𝑦(𝑣) = 𝑎𝑦0 + ∑ (𝑎𝑦𝑛
𝑁
𝑛=1 𝑠𝑖𝑛 𝑛 𝑣 + 𝑏𝑦𝑛 𝑐𝑜𝑠 𝑛 𝑣)                 165 

𝑧(𝑣) = 𝑧𝑐                                   (1) 166 

where 0 ≤ 𝑣 ≤ 2𝜋, 𝑎𝑥𝑛  and 𝑎𝑦𝑛  (𝑛 = 0, 1, 2, 3, ⋯ , 𝑁) are undetermined constants, which 167 

are determined by using Eq. (1) to fit cross section curves represented with discrete 168 

points. As shown in Eq. (1), the parameter 𝑁 could be set to different numbers in order 169 

to get different resolutions and degree of approximation. 170 

3.2. Creation of 𝐶2 continuous PDE surfaces 171 

According to [32], “there is no restriction upon the type and order of the PDE to be 172 

solved” and “elliptic PDEs have been chosen to develop this technique since this kind of 173 

PDE is regarded as an averaging process throughout the entire surface”. In this paper, 174 

an elliptic PDE will be introduced to develop a 3D modelling method.  175 

When a 𝐶2 continuous PDE surface patch is created from known boundary condi- 176 

tions on two boundaries, it should satisfy the position functions and the first and second 177 

partial derivatives on the two boundaries. Therefore, there are six boundary conditions 178 

in total. It is known that the closed form solution of a sixth-order partial differential 179 

equation involves six undetermined constants, which can be used to exactly satisfy the 180 

six boundary conditions. Therefore, in order to achieve 𝐶2 continuity between two adja- 181 

cent PDE surface patches, the following vector-value sixth-order partial differential 182 

equation is proposed to define PDE surface patches: 183 
𝜕6𝑤

𝜕𝑢6 + 𝑎
𝜕6𝑤

𝜕𝑣6 = 0                                                                       184 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑎 ≠ 0)       (2) 185 

According to the above Eq. (1), the solution to the partial differential equation (2) 186 

can be taken to be: 187 

𝑥(𝑢, 𝑣) = 𝐴𝑥0(𝑢) + ∑ [𝐴𝑥𝑛(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑥𝑛(𝑢) 𝑠𝑖𝑛 𝑛 𝑣]𝑁
𝑛=1     (3)              188 

𝑦(𝑢, 𝑣) = 𝐴𝑦0(𝑢) + ∑ [𝐴𝑦𝑛(𝑢) 𝑠𝑖𝑛 𝑛 𝑣 + 𝐵𝑦𝑛(𝑢) 𝑐𝑜𝑠 𝑛 𝑣]𝑁
𝑛=1     (4)            189 

𝑧(𝑢, 𝑣) = 𝐴𝑧0(𝑢)                              (5) 190 

In the above equations (3)-(5), the undetermined functions 𝐴𝑤0(𝑢) (𝑤 = 𝑥, 𝑦, 𝑧) 191 

and 𝐴𝑤𝑛(𝑢) and 𝐵𝑤𝑛(𝑢) (𝑤 = 𝑥, 𝑦, 𝑧; 𝑛 = 1, 2, 3, … , 𝑁) are derived in Appendix A, which 192 

can be written as Eqs. (6), (7), and (8) below, respectively.   193 

𝐴𝑤0(𝑢) = 𝑎𝑤0,0 + 𝑎𝑤0,1𝑢 + 𝑎𝑤0,2𝑢2 + 𝑎𝑤0,3𝑢3 + 𝑎𝑤0,4𝑢4 + 𝑎𝑤0,5𝑢5 194 

   (𝑤 = 𝑥, 𝑦, 𝑧)                      (6) 195 

For 𝑎 > 0,   196 

𝐴𝑤𝑛(𝑢) = (𝑎𝑤𝑛,0 + 𝑎𝑤𝑛,1𝑢 + 𝑎𝑤𝑛,2𝑢2)𝑒𝑞0𝑛𝑢 + (𝑎𝑤𝑛,3 + 𝑎𝑤𝑛,4𝑢 + 𝑎𝑤𝑛,5𝑢2)𝑒−𝑞0𝑛𝑢 197 

𝐵𝑤𝑛(𝑢) = (𝑏𝑤𝑛,0 + 𝑏𝑤𝑛,1𝑢 + 𝑏𝑤𝑛,2𝑢2)𝑒𝑞0𝑛𝑢 + (𝑏𝑤𝑛,3 + 𝑏𝑤𝑛,4𝑢 + 𝑏𝑤𝑛,5𝑢2)𝑒−𝑞0𝑛𝑢 198 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁)                       (7) 199 

For 𝑎 < 0,   200 
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𝐴𝑤𝑛(𝑢) = 𝑎𝑤𝑛,0𝑐𝑜𝑠2𝑞2𝑛𝑢 + 𝑎𝑤𝑛,1𝑠𝑖𝑛2𝑞2𝑛𝑢 + 𝑎𝑤𝑛,2𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑎𝑤𝑛,3𝑒𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 201 
+𝑎𝑤𝑛,4𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑎𝑤𝑛,5𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 202 

  𝐵𝑤𝑛(𝑢) = 𝑏𝑤𝑛,0𝑐𝑜𝑠2𝑞2𝑛𝑢 + 𝑏𝑤𝑛,1𝑠𝑖𝑛2𝑞2𝑛𝑢 + 𝑏𝑤𝑛,2𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑏𝑤𝑛,3𝑒𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 203 
+𝑏𝑤𝑛,4𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑏𝑤𝑛,5𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢            204 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁)                       (8) 205 

In what follows, we use the solution for the case 𝑎 < 0, i. e., Eqs. (3-5) whose 206 

undetermined functions are determined by Eqs. (6) and (8), to reconstruct 3D shapes 207 

consisting of 𝐶2 continuous PDE surface patches. 208 

Twelve curves shown in Figure 3 are used to demonstrate how to reconstruct three 209 

PDE surface patches with 𝐶2 continuity. The mathematical equations for 12 curves 𝐂1 − 210 

𝐂12 are: 211 

𝑥𝐶𝑖(𝑣) = 𝑎𝑥0
𝐶𝑖 + ∑ (𝑎𝑥𝑛

𝐶𝑖𝑁
𝑛=1 𝑐𝑜𝑠 𝑛 𝑣 + 𝑏𝑥𝑛

𝐶𝑖 𝑠𝑖𝑛 𝑛 𝑣)         212 

𝑦𝐶𝑖(𝑣) = 𝑎𝑦0
𝐶𝑖 + ∑ (𝑎𝑦𝑛

𝐶𝑖𝑁
𝑛=1 𝑠𝑖𝑛 𝑛 𝑣 + 𝑏𝑦𝑛

𝐶𝑖 𝑐𝑜𝑠 𝑛 𝑣)        213 

𝑧𝐶𝑖(𝑣) = 𝑧𝑐
𝐶𝑖                 214 

(𝑖 = 1, 2, 3, 4, … , 12)         (9)   215 

As shown in Figure 4, the six curves 𝑪4 − 𝑪9 are used to construct the first PDE sur- 216 

face patch (Patch 1). Then, two different methods are used to construct PDE surface 217 

patch 2 and patch 3 with 𝐶2 continuity. For curve 𝐂4, 𝑢 = 0 of Patch 1 is the same as 𝑢 = 218 

1 of Patch 2. Similarly, for curve 𝐂9, 𝑢 = 1 of Patch 1 is the same as 𝑢 = 0 of Patch 3. 219 

Curve 𝐂1 is at 𝑢 = 0 of Patch 2 and 𝐂12 is at 𝑢 = 1 of Patch 3. 220 

The first method uses the six curves 𝑪𝟒 − 𝑪𝟗 to construct the PDE surface patch 1,  221 

the curves 𝑪𝟏 − 𝑪𝟔 to construct the PDE surface patch 2, and the six curves 𝑪𝟕 − 𝑪𝟏𝟐 to 222 

construct the PDE surface patch 3. With this construction method, the patch 1 and patch 223 

2 at the curve 𝑪𝟒 and the patch 1 and patch 3 at the curve 𝑪𝟗 achieve up to 𝐶2 continuity.  224 

The second method calculates the first and second partial derivatives of the PDE 225 

surface patch 1 at the curves 𝑪𝟒 and 𝑪𝟗, and use the curves 𝑪𝟏 − 𝑪𝟒 and the first and sec- 226 

ond partial derivatives of the PDE surface patch 1 at the curves 𝑪𝟒 to construct the PDE 227 

surface patch 2, and the curves 𝑪𝟗 − 𝑪𝟏𝟐 and the first and second partial derivatives of 228 

the PDE surface patch 1 at the curves 𝑪𝟗 to construct the PDE surface patch 3. With this 229 

construction method, the patch 1 and patch 2 at the curve 𝑪𝟒 and the patch 1 and patch 3 230 

at the curve 𝑪𝟗 also achieve 𝐶2 continuity. The first partial derivatives can be obtained 231 

below from Eqs. (6) and (8). 232 

 233 
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Figure 4. Surface creation example. The six curves 𝑪4 − 𝑪9 (red) are used to construct the PDE sur- 234 
face patch 1.   235 

∂𝐴𝑤0(𝑢)

∂𝑢
= 𝑎𝑤0,1 + 2𝑎𝑤0,2𝑢 + 3𝑎𝑤0,3𝑢2 + 4𝑎𝑤0,4𝑢3 + 5𝑎𝑤0,5𝑢4 236 

(𝑤 = 𝑥, 𝑦, 𝑧)                                         (10) 237 
∂𝐴𝑤𝑛(𝑢)

∂𝑢
= −2𝑎𝑤𝑛,0𝑞2𝑛𝑠𝑖𝑛2𝑞2𝑛𝑢 + 2𝑎𝑤𝑛,1𝑞2𝑛𝑐𝑜𝑠2𝑞2𝑛𝑢 238 

+𝑎𝑤𝑛,2(𝑞1𝑛𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 − 𝑞2𝑛𝑒𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢) 239 
+𝑎𝑤𝑛,3(𝑞1𝑛𝑒𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 + 𝑞2𝑛𝑒𝑞1𝑛𝑢 𝑐𝑜𝑠 𝑞2𝑛𝑢) 240 

−𝑎𝑤𝑛,4(𝑞1𝑛𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑞2𝑛𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢) 241 
+𝑎𝑤𝑛,5(−𝑞1𝑛𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 + 𝑞2𝑛𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢)      242 

∂𝐵𝑤𝑛(𝑢)

∂𝑢
= −2𝑏𝑤𝑛,0𝑞2𝑛𝑠𝑖𝑛2𝑞2𝑛𝑢 + 2𝑏𝑤𝑛,1𝑞2𝑛𝑐𝑜𝑠𝑞2𝑛𝑢 243 

+𝑏𝑤𝑛,2(𝑞1𝑛𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 − 𝑞2𝑛𝑒𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢) 244 
+𝑏𝑤𝑛,3(𝑞1𝑛𝑒𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 + 𝑞2𝑛𝑒𝑞1𝑛𝑢 𝑐𝑜𝑠 𝑞2𝑛𝑢) 245 
−𝑏𝑤𝑛,4(𝑞1𝑛𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑞2𝑛𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢) 246 

+𝑏𝑤𝑛,5(−𝑞1𝑛𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 + 𝑞2𝑛𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢)      247 

 (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁)             (11) 248 

And the second partial derivatives can be derived from the above equations (10) 249 

and (11) and have the forms below 250 
𝜕2𝐴𝑤0(𝑢)

𝜕𝑢2
= 2𝑎𝑤0,2 + 6𝑎𝑤0,3𝑢 + 12𝑎𝑤0,4𝑢2 + 20𝑎𝑤0,5𝑢3 251 

(𝑤 = 𝑥, 𝑦, 𝑧)                              (12) 252 
∂2𝐴𝑤𝑛(𝑢)

∂𝑢2
= −4𝑎𝑤𝑛,0𝑞2𝑛

2 𝑐𝑜𝑠2𝑞2𝑛𝑢 − 4𝑎𝑤𝑛,1𝑞2𝑛
2 𝑠𝑖𝑛2𝑞2𝑛𝑢 + 253 

𝑎𝑤𝑛,2(𝑞1𝑛
2 𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 − 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 − 𝑞2𝑛

2 𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢) + 254 

𝑎𝑤𝑛,3(𝑞1𝑛
2 𝑒𝑞1𝑛𝑢 sin 𝑞2𝑛𝑢 + 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑢 cos 𝑞2𝑛𝑢 − 𝑞2𝑛

2 𝑒𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢) + 255 
𝑎𝑤𝑛,4(𝑞1𝑛

2 𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑢 sin 𝑞2𝑛𝑢 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢) + 256 

𝑎𝑤𝑛,5(𝑞1𝑛
2 𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 − 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 − 𝑞2𝑛

2 𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢)   257 
𝜕2𝐵𝑤𝑛(𝑢)

𝜕𝑢2
= −4𝑏𝑤𝑛,0𝑞2𝑛

2 𝑐𝑜𝑠2𝑞2𝑛𝑢 − 4𝑏𝑤𝑛,1𝑞2𝑛
2 𝑠𝑖𝑛2𝑞2𝑛𝑢 + 258 

𝑏𝑤𝑛,2(𝑞1𝑛
2 𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 − 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 − 𝑞2𝑛

2 𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢) + 259 

𝑏𝑤𝑛,3(𝑞1𝑛
2 𝑒𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 + 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑢 𝑐𝑜𝑠 𝑞2𝑛𝑢 − 𝑞2𝑛

2 𝑒𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢) + 260 
𝑏𝑤𝑛,4(𝑞1𝑛

2 𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢) + 261 

𝑏𝑤𝑛,5(𝑞1𝑛
2 𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 − 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 − 𝑞2𝑛

2 𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢) 262 

 (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁)             (13) 263 

Substituting 𝑢 = 0 into Eqs. (10) – (13), we obtain the first and second partial deriv- 264 

atives of the PDE surface patch 2 at 𝑢 = 1. They together with the curves 𝑪1 − 𝑪4 are 265 

used to construct the PDE surface patch 2.  266 

Substituting 𝑢 = 1 into Eqs. (10) – (13), we obtain the first and second partial deriv- 267 

atives of the PDE surface patch 3 at 𝑢 = 0. They together with the curves 𝑪9 − 𝑪12 are 268 

used to construct the PDE surface patch 3. 269 

3.2.1. PDE surface Patch 1 creation  270 

The six curves 𝑪𝟒  − 𝑪𝟗 for Patch 1 are at 𝑢 = 0, 𝑢 = 0.2, 𝑢 = 0.4, 𝑢 = 0.6, 𝑢 = 0.8, 271 

and 𝑢 = 1. At these positions, the PDE surface patch 1 passes through the six curves, 272 

which gives six equations for x component, y component, and z component.   273 

For the middle PDE surface patch 1, we introduce the superscript P1 into Eqs. (3)- 274 

(5) and change them into: 275 
𝑥𝑃1(𝑢, 𝑣) = 𝐴𝑥0

𝑃1(𝑢) + ∑ [𝐴𝑥𝑛
𝑃1(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑥𝑛

𝑃1(𝑢) 𝑠𝑖𝑛 𝑛 𝑣]𝑁
𝑛=1                   276 

𝑦𝑃1(𝑢, 𝑣) = 𝐴𝑦0
𝑃1(𝑢) + ∑ [𝐴𝑦𝑛

𝑃1 (𝑢) 𝑠𝑖𝑛 𝑛 𝑣 + 𝐵𝑦𝑛
𝑃1(𝑢) 𝑐𝑜𝑠 𝑛 𝑣]𝑁

𝑛=1  277 

𝑧𝑃1(𝑢, 𝑣) = 𝐴𝑧0
𝑃1(𝑢)                (14) 278 

The middle PDE surface patch 1 is created from 6 curves  𝑪𝟒 −  𝑪𝟗. The PDE surface 279 

Patch 1 passes through the Curves 𝑪𝟒  −  𝑪𝟗, which gives the following equations. 280 
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𝐴𝑥0
𝑃1(0.2𝑖) + ∑ [𝐴𝑥𝑛

𝑃1(0.2𝑖) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑥𝑛
𝑃1(0.2𝑖) 𝑠𝑖𝑛 𝑛 𝑣]𝑁

𝑛=1       281 

= 𝑎𝑥0
𝐶𝑖+4 + ∑ (𝑎𝑥𝑛

𝐶𝑖+4𝑁
𝑛=1 𝑐𝑜𝑠 𝑛 𝑣 + 𝑏𝑥𝑛

𝐶𝑖+4 𝑠𝑖𝑛 𝑛 𝑣)    282 

𝐴𝑦0
𝑃1(0.2𝑖) + ∑ [𝐴𝑦𝑛

𝑃1 (0.2𝑖) 𝑠𝑖𝑛 𝑛 𝑣 + 𝐵𝑦𝑛
𝑃1(0.2𝑖) 𝑐𝑜𝑠 𝑛 𝑣]𝑁

𝑛=1       283 

= 𝑎𝑦0
𝐶𝑖+4 + ∑ (𝑎𝑦𝑛

𝐶𝑖+4𝑁
𝑛=1 𝑠𝑖𝑛 𝑛 𝑣 + 𝑏𝑦𝑛

𝐶𝑖+4 𝑐𝑜𝑠 𝑛 𝑣)    284 

𝐴𝑧0
𝑃1(0.2𝑖) = 𝑧𝑐

𝐶𝑖+4        285 
(𝑖 = 0, 1, 2, 3, 4, 5)        (15) 286 

      where the superscript “P1” indicates the first PDE surface patch.   287 

Although the values of the parametric variable 𝑢 are taken to be uniform, i. e., 𝑢 = 288 

0.2𝑖 (𝑖 = 0, 1, 2, 3, 4, 5), the values of 𝑧𝑐
𝐶𝑖+4 can be arbitrary, i. e., uniform or nonuniform 289 

since the function 𝐴𝑧0(𝑢) for the 𝑧 component involves six undetermined constants to ex- 290 

actly satisfy arbitrary variations defined by the six values of 𝑧𝑐
𝐶𝑖+4.  291 

The above equation (15) can be changed into the following three groups of equa- 292 

tions 293 

𝐴𝑤0
𝑃1 (0.2𝑖) = 𝑎𝑤0

𝐶𝑖+4 294 
 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 0, 1, 2, 3, 4, 5)       (16) 295 

𝐴𝑤𝑛
𝑃1 (0.2𝑖) = 𝑎𝑤𝑛

𝐶𝑖+4  296 
(𝑤 = 𝑥, 𝑦;  𝑖 = 0, 1, 2, 3, 4, 5)             (17) 297 

𝐵𝑤𝑛
𝑃1 (0.2𝑖) = 𝑏𝑤𝑛

𝐶𝑖+4  298 
(𝑤 = 𝑥, 𝑦;  𝑖 = 0, 1, 2, 3, 4, 5)             (18) 299 

For the PDE surface patch 1, we introduce the superscript P1 into Eqs. (6) and (8) and 300 
obtain: 301 

𝐴𝑤0
𝑃1 (𝑢) = 𝑎𝑤0,0

𝑃1 + 𝑎𝑤0,1
𝑃1 𝑢 + 𝑎𝑤0,2

𝑃1 𝑢2 + 𝑎𝑤0,3
𝑃1 𝑢3 + 𝑎𝑤0,4

𝑃1 𝑢4 + 𝑎𝑤0,5
𝑃1 𝑢5 302 

   (𝑤 = 𝑥, 𝑦, 𝑧)                      (19) 303 

 𝐴𝑤𝑛
𝑃1 (𝑢) = (𝑎𝑤𝑛,0

𝑃1 + 𝑎𝑤𝑛,1
𝑃1 𝑢 + 𝑎𝑤𝑛,2

𝑃1 𝑢2)𝑒𝑞0𝑛𝑢 + (𝑎𝑤𝑛,3
𝑃1 + 𝑎𝑤𝑛,4

𝑃1 𝑢 + 𝑎𝑤𝑛,5
𝑃1 𝑢2)𝑒−𝑞0𝑛𝑢 304 

𝐵𝑤𝑛
𝑃1 (𝑢) = (𝑏𝑤𝑛,0

𝑃1 + 𝑏𝑤𝑛,1
𝑃1 𝑢 + 𝑏𝑤𝑛,2

𝑃1 𝑢2)𝑒𝑞0𝑛𝑢 + (𝑏𝑤𝑛,3
𝑃1 + 𝑏𝑤𝑛,4

𝑃1 𝑢 + 𝑏𝑤𝑛,5
𝑃1 𝑢2)𝑒−𝑞0𝑛𝑢 305 

  (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁)               (20) 306 
Substituting Eq. (19) into the above Eq. (16), the first group of equations is changed 307 

into below 308 

𝑎𝑤0,0
𝑃1 + 0.2𝑖𝑎𝑤0,1

𝑃1 + 0.04𝑖2𝑎𝑤0,2
𝑃1 + 0.008𝑖3𝑎𝑤0,3

𝑃1 + 0.0016𝑖4𝑎𝑤0,4
𝑃1 + 0.00032𝑖5𝑎𝑤0,5

𝑃1 = 𝑎𝑤0
𝐶𝑖+4  309 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 0, 1, 2, 3, 4, 5)       (21) 310 
Substituting the first of Eq. (20) into the above Eq. (17), the second group of equations 311 

is changed into below 312 
𝑎𝑤𝑛,0

𝑃1 𝑐𝑜𝑠0.4𝑖𝑞2𝑛 + 𝑎𝑤𝑛,1
𝑃1 𝑠𝑖𝑛0.4𝑖𝑞2𝑛 + 𝑎𝑤𝑛,2

𝑃1 𝑒0.2𝑖𝑞1𝑛𝑐𝑜𝑠0.2𝑖𝑞2𝑛 + 𝑎𝑤𝑛,3
𝑃1 𝑒0.2𝑖𝑞1𝑛 𝑠𝑖𝑛 0.2𝑖𝑞2𝑛 313 

+ 𝑎𝑤𝑛,4
𝑃1 𝑒−0.2𝑖𝑞1𝑛𝑐𝑜𝑠0.2𝑖𝑞2𝑛 + 𝑎𝑤𝑛,5

𝑃1 𝑒−0.2𝑖𝑞1𝑛𝑠𝑖𝑛0.2𝑖𝑞2𝑛 = 𝑎𝑤𝑛
𝐶𝑖+4 314 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5)         (22) 315 
Substituting the second of Eq. (20) into the above Eq. (18), the third group of 316 

equations is changed into below 317 
𝑏𝑤𝑛,0

𝑃1 𝑐𝑜𝑠0.4𝑖𝑞2𝑛 + 𝑏𝑤𝑛,1
𝑃1 𝑠𝑖𝑛0.4𝑖𝑞2𝑛 + 𝑏𝑤𝑛,2

𝑃1 𝑒0.2𝑖𝑞1𝑛𝑐𝑜𝑠0.2𝑖𝑞2𝑛 + 𝑏𝑤𝑛,3
𝑃1 𝑒0.2𝑖𝑞1𝑛 𝑠𝑖𝑛 0.2𝑖𝑞2𝑛 318 

+ 𝑏𝑤𝑛,4
𝑃1 𝑒−0.2𝑖𝑞1𝑛𝑐𝑜𝑠0.2𝑖𝑞2𝑛 + 𝑏𝑤𝑛,5

𝑃1 𝑒−0.2𝑖𝑞1𝑛𝑠𝑖𝑛0.2𝑖𝑞2𝑛 = 𝑏𝑤𝑛
𝐶𝑖+4 319 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5)          (23) 320 

Solving Eq. (21), we obtain the undetermined constants 𝑎𝑤0,𝑖
𝑃1  ( 𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 321 

0, 1, 2, 3, 4, 5). Solving Eq. (22), we obtain the undetermined constants 𝑎𝑤𝑛,𝑖
𝑃1  (𝑤 = 𝑥, 𝑦; 𝑛 = 322 

1, 2, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5). Solving Eq. (23), we obtain the undetermined constants 𝑏𝑤𝑛,𝑖
𝑃1  323 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5). After that, substituting 𝑎𝑤0,𝑖
𝑃1  (𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 324 

0, 1, 2, 3, 4, 5) into Eq. (19), 𝑎𝑤𝑛,𝑖
𝑃1  and 𝑏𝑤𝑛,𝑖

𝑃1  (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5) into 325 

Eq. (20), and then substituting Eqs. (19) and (20) into Eq. (14), we obtain the PDE surface 326 
pacth 1.  327 

3.2.2. Creation of PDE surface patch 2  328 

Two methods can be used to create the bottom PDE surface patch 2. The first meth- 329 

od uses the six curves  𝐂1 − 𝐂6 to create the PDE surface patch 2, and the second method 330 

uses the curves  𝐂1 − 𝐂4 and the first and second partial derivatives of the PDE surface 331 

patch 1 at the curve 𝐂4. For creation of the bottom PDE surface patch 2 from 6 curves 𝐂1 332 
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− 𝐂6, the three curves  𝐂4 − 𝐂6 are shared by both PDE surface Patches 1 and 2 to ensure 333 

𝐶2 continuity on the curve  𝐂4.   334 

With the first method, we use 𝑎𝑥0
𝐶𝑖 , 𝑎𝑦0

𝐶𝑖 , and 𝑎𝑧0
𝐶𝑖  (𝑖 = 1, 2, 3, 4, 5, 6) to replace 𝑎𝑥0

𝐶𝑗 , 𝑎𝑦0

𝐶𝑗  335 

and 𝑎𝑧0

𝐶𝑗  (𝑗 = 4, 5, 6, 7, 8, 9), and 𝑎𝑤0,𝑖
𝑃2  (𝑤 = 𝑥, 𝑦, 𝑧; 𝑖 = 0, 1, 2, 3, 4, 5), and 𝑎𝑤𝑛,𝑖

𝑃2  and 𝑏𝑤𝑛,𝑖
𝑃2 (𝑤 = 336 

𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5) to replace 𝑎𝑤0,𝑖
𝑃1  (𝑤 = 𝑥, 𝑦, 𝑧; 𝑖 = 0, 1, 2, 3, 4, 5), and 337 

𝑎𝑤𝑛,𝑖
𝑃1  and 𝑏𝑤𝑛,𝑖

𝑃1  (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5). Same as the above treatment, 338 

we obtain 𝑎𝑤0,𝑖
𝑃2  (𝑤 = 𝑥, 𝑦, 𝑧; 𝑖 = 0, 1, 2, 3, 4, 5), 𝑎𝑤𝑛,𝑖

𝑃2  and 𝑏𝑤𝑛,𝑖
𝑃2 . With the obtained 𝑎𝑤0,𝑖

𝑃2  339 

(𝑤 = 𝑥, 𝑦, 𝑧; 𝑖 = 0, 1, 2, 3, 4, 5), 𝑎𝑤𝑛,𝑖
𝑃2  and 𝑏𝑤𝑛,𝑖

𝑃2   (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5) , 340 

we create the PDE surface patch 2 between 0.0 ≤ 𝑢 ≤ 0.6, which achieves up to 𝐶2 conti- 341 

nuity with the PDE surface patch 1 at 𝑢 = 0.6 of the PDE surface patch 2, which is on the 342 

curve  𝐂4.   343 

With the second method, the PDE surface pacth 2 shares the same first and second 344 

partial derivatives with the PDE surface patch 1 on the curve  𝑪4, and the PDE surface 345 

patch 2 passes through the curves  𝑪1- 𝑪4. According to these requirements, we obtain 346 

the following equations: 347 
𝜕𝑤𝑃2(1, 𝑣)

𝜕𝑢
=

𝜕𝑤𝑃1(0, 𝑣)

𝜕𝑢
 348 

𝜕2𝑤𝑃2(1, 𝑣)

𝜕𝑢2
=

𝜕2𝑤𝑃1(0, 𝑣)

𝜕𝑢2
 349 

(𝑤 = 𝑥, 𝑦, 𝑧)                              (24) 350 

𝑤𝑃2(𝑖 3⁄ , 𝑣) =   𝐂𝑖(𝑣) 351 
(𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 0, 1, 2, 3)             (25) 352 

     where  353 

𝑥𝑃2(𝑢, 𝑣) = 𝐴𝑥0
𝑃2(𝑢) + ∑ [𝐴𝑥𝑛

𝑃2(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑥𝑛
𝑃2(𝑢) 𝑠𝑖𝑛 𝑛 𝑣]𝑁

𝑛=1           354 
𝑦𝑃2(𝑢, 𝑣) = 𝐴𝑦0

𝑃2(𝑢) + ∑ [𝐴𝑦𝑛
𝑃2 (𝑢) 𝑠𝑖𝑛 𝑛 𝑣 + 𝐵𝑦𝑛

𝑃2(𝑢) 𝑐𝑜𝑠 𝑛 𝑣]𝑁
𝑛=1          355 

𝑧𝑃2(𝑢, 𝑣) = 𝐴𝑧0
𝑃2(0)       (26) 356 

The undetermined functions 𝐴𝑤0
𝑃2 (𝑢)  (𝑤 = 𝑥, 𝑦, 𝑧)  and 𝐴𝑤𝑛

𝑃2 (𝑢)  and 𝐵𝑤𝑛
𝑃2 (𝑢)  (𝑤 = 357 

𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁) involved in Eq. (26) are determined by solving Eqs. (24) and (25). 358 

The details of solving Eqs. (24) and (25) are given in Appendix B.  359 

With the obtained 𝑎𝑤0,𝑖
𝑃2  (𝑤 = 𝑥, 𝑦, 𝑧; 𝑖 = 0, 1, 2, 3, 4, 5), 𝑎𝑤𝑛,𝑖

𝑃2 and 𝑏𝑤𝑛,𝑖
𝑃2   (𝑤 = 𝑥, 𝑦; 𝑛 = 360 

1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5), we create the PDE surface patch 2 between 0.0 ≤ 𝑢 ≤ 1.0 361 

with Eq. (26), which achieves up to 𝐶2 continuity with the PDE surface patch 1 at 𝑢 = 1.0 362 

of the PDE surface patch 2.  363 

3.2.3. Creation of PDE surface patch 3  364 

With the same method as creating PDE surface patch 2, we create PDE surface 365 

patch 3, which can be written as the following equations.  366 

𝑥𝑃3(𝑢, 𝑣) = 𝐴𝑥0
𝑃3(𝑢) + ∑ [𝐴𝑥𝑛

𝑃3(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑥𝑛
𝑃3(𝑢) 𝑠𝑖𝑛 𝑛 𝑣]𝑁

𝑛=1            367 
𝑦𝑃3(𝑢, 𝑣) = 𝐴𝑦0

𝑃3(𝑢) + ∑ [𝐴𝑦𝑛
𝑃3 (𝑢) 𝑠𝑖𝑛 𝑛 𝑣 + 𝐵𝑦𝑛

𝑃3(𝑢) 𝑐𝑜𝑠 𝑛 𝑣]𝑁
𝑛=1          368 

𝑧𝑃3(𝑢, 𝑣) = 𝐴𝑧0
𝑃3(0)                (27) 369 

4. Results  370 

The above method and corresponding mathematical equations have been imple- 371 

mented using C++. The implemented computer program consists of two parts. The first 372 

part determines the coefficients involved in Eq. (1) by fitting it to cross section curves, 373 

and the second part determines the undetermined coefficients 𝑎𝑤0,𝑖
𝑃1  (𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 374 

0, 1, 2, 3, 4, 5) and 𝑎𝑤𝑛,𝑖
𝑃1  and 𝑏𝑤𝑛,𝑖

𝑃1  (𝑤 = 𝑥, 𝑦;  𝑛 = 1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5) for the PDE 375 
surface patch 1, 𝑎𝑤0,𝑖

𝑃2  ( 𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 0, 1, 2, 3, 4, 5)  and 𝑎𝑤𝑛,𝑖
𝑃2  and 𝑏𝑤𝑛,𝑖

𝑃2  ( 𝑤 = 𝑥, 𝑦;  𝑛 = 376 
1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5)  for the PDE surface patch 2, and 𝑎𝑤0,𝑖

𝑃3  (𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 377 
0, 1, 2, 3, 4, 5) and 𝑎𝑤𝑛,𝑖

𝑃3  and 𝑏𝑤𝑛,𝑖
𝑃3  (𝑤 = 𝑥, 𝑦;  𝑛 = 1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5) for the PDE 378 

surface patch 3.  379 
 Figure 5 gives an example of creating the parts of shoulder, body, left arm and leg 380 

with the above obtained PDE surface patches.  381 
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382 
Figure 5. The cross section curves and created human body parts. 383 

Figure 6 shows the cross section curves of human body and reconstructed human 384 

body in front and side views. The reconstructed and rendered human body models 385 

show our method can obtain smooth models without any manual operations to stitch 386 

adjacent patches together.  387 

388 
Figure 6. The cross section curves of human body and created human body model in front and 389 
side views using 𝐶2 continues PDE method.  390 

Figure 7 shows smooth models of a vase, a horse belly, elephant front legs, and an 391 

elephant nose generated from vertical or horizontal cross section curves by using the 392 

method proposed in this paper.  393 

 394 
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(a) (b) (c) 

Figure 7.  Surface shape generation from cross section curves by using the method proposed in 396 
this paper. (a) a smooth vase model, (b) a horse belly model, (c) front leg and nose models of an el- 397 
ephant.  398 

5. Conclusions 399 

We have developed a PDE-based modelling method to create 3D models in this pa- 400 

per. Fourier series have been used to define generalized elliptic curves, which can ap- 401 

proximate ground-truth cross section curves with few coefficients and high accuracy. A 402 

vector-valued sixth-order partial differential equation has been proposed to construct 3D 403 

models from cross section curves and achieve 𝐶2 continuity between two adjacent PDE 404 

surface patches. The accurate closed form solution to the vector-valued sixth-order par- 405 

tial differential equations has been derived, and the undetermined constants involved in 406 

the closed form solution have been determined by interpolating cross section curves 407 

while keeping 𝐶2 continuity between two adjacent PDE surface patches. A number of 408 

examples have been presented to demonstrate the application of the proposed method 409 

in creating 3D models from cross section curves.  410 

With the help of the physics-based analytical mathematical solution, a very compli- 411 

cated cross section curve can be represented with few variables. Compared with the 412 

polygon modeling, the proposed approach generates complicated and smooth surface 413 

models with fewer design variables and requires less hardware storage. In comparison 414 

with NURBS modeling, the proposed method has no continuity problem between differ- 415 

ent patches, which leads to the advantages of saving manual operations and reducing 416 

geometric modelling workload and time. 417 

Moreover, the presented examples show that our method is accurate and effective 418 

in creating 3D surface model from cross section curves. Because of fewer variables and 419 

analytical mathematical expression, the proposed approach is applicable to many appli- 420 

cations involving heavy calculations such as machine learning-based shape reconstruc- 421 

tion and computer animation and situations such as level of detail where different reso- 422 

lutions of a geometric model are used for different visual requirements.  423 

The limitation of our method is additional processing of 3D models with more than 424 

one branch. For this situation, 3D models are segmented into parts. Each part is created 425 

with the method proposed in this paper. When two adjacent part models cannot be di- 426 
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rectly connected together, a transition surface is created to connect the two adjacent part 427 

models together. The transition surface is defined by two boundary curves respectively 428 

on the adjacent part models and the continuity requirements on the two boundary 429 

curves. The blending method proposed in [33] can be used to create the transition sur- 430 

face, which smoothly connects the two adjacent part models together with 𝐶2 continuity.   431 

Our work opens up several directions for future work. The first direction is input 432 

data processing. Although the method of reconstructing cross section curves from point 433 

clouds is mentioned in Section 3, how to obtain reconstructed cross section curves has 434 

not been discussed in this paper. In our following work, we will develop a new method 435 

to reconstruct Fourier series-represented cross section curves from point clouds.   436 

The second direction is to extend the proposed method to more modelling applica- 437 

tions of organic models and smooth man-made models. These organic models and 438 

smooth man-made models include non-human animals such as horses, bell peppers, 439 

vases, mountain contours, and streamlined aircrafts, trains and cars. We will investigate 440 

these modelling applications in our following work. 441 

This paper discusses 3D modelling based on cross section curves. Actually, the 442 

method proposed in this paper can be extended to deal with spatial curves. In this case, 443 

the position component 𝑧 is also the function of the parametric variables 𝑢 and 𝑣. The 444 

undetermined constants involved in the 𝑧 component function can be determined with 445 

the same method as the one used to determine the undetermined constants involved in 𝑥 446 

and 𝑦 component functions.  447 

 448 

 449 
Author Contributions: Conceptualization, L.Y. and H.F.; validation, S.B., H.F. and O.L.; writing— 450 
original draft preparation, H.F. and L.Y.; writing—review and editing, H.F., S.B., A.I., J.M. and 451 
L.Y.; visualization, H.F. and E.C.; supervision, A.I., L.Y., J.M. and J.Z.; funding acquisition, A.I., 452 
L.Y. and J.Z. All authors have read and agreed to the published version of the manuscript. 453 

Funding: This research is supported by the PDE-GIR project, which has received funding from the 454 
European Union Horizon 2020 Research and Innovation Programme under the Marie Skodowska- 455 
Curie grant agreement No 778035. Andres Iglesias also thanks the project TIN2017‐89275‐R fund‐ 456 
ed by MCIN/AEI/10.13039/501100011033/ FEDER “Una manera de hacer Europa“. And Haibin Fu 457 
is grateful for a scholarship from the Rabin Ezra Scholarship Trust. 458 

Conflicts of Interest: The authors declare no conflict of interest. 459 

References 460 

1. Russo, M. Polygonal modeling: basic and advanced techniques. Wordware Pub: Plano, Tx, 2006. ISBN 9781598220070. 461 
2. Piegl, L.; Tiller, W. The NURBS Book; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. ISBN 462 

9783540550693. 463 
3. Farin, G. Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide; Elsevier: Amsterdam, The Nether- 464 

lands, 2014. ISBN 9780122490521. 465 
4. Bischoff, S.; Kobbelt, L. Teaching meshes, subdivision and multiresolution techniques. Computer-Aided Design 2004, 36, 1483– 466 

1500, doi:10.1016/j.cad.2003.11.007 467 
5. Nealen, A.; Müller, M.; Keiser, R.; Boxerman, E.; Carlson, M. Physically Based Deformable Models in Computer Graphics. 468 

Computer Graphics Forum 2006, 25, 809-836, doi: 10.1111/j.1467-8659.2006.01000.x. 469 
6. Li, Z.-C.; Chang, C.-S. Boundary penalty finite element methods for blending surfaces, III. Superconvergence and stability and 470 

examples. Journal of Computational and Applied Mathematics 1999, 110, 241–270, doi:10.1016/s0377-0427(99)00231-9. 471 
7. Chaudhry, E.; Bian, S.J.; Ugail, H.; Jin, X.; You, L.H.; Zhang, J.J. Dynamic skin deformation using finite difference solutions for 472 

character animation. Computers & Graphics 2015, 46, 294–305, doi:10.1016/j.cag.2014.09.029. 473 
8. Cornford, S.L.; Martin, D.F.; Graves, D.T.; Ranken, D.F.; Le Brocq, A.M.; Gladstone, R.M.; Payne, A.J.; Ng, E.G.; Lipscomb, 474 

W.H. Adaptive mesh, finite volume modeling of marine ice sheets. Journal of Computational Physics 2013, 232, 529–549, 475 
doi:10.1016/j.jcp.2012.08.037. 476 

9. Liu, T.; Bargteil, A.W.; O’Brien, J.F.; Kavan, L. Fast simulation of mass-spring systems. ACM Transactions on Graphics 2013, 32, 477 
1–7, doi:10.1145/2508363.2508406. 478 

10. Donning, B.M.; Liu, W.K. Meshless methods for shear-deformable beams and plates. Computer Methods in Applied Mechanics 479 
and Engineering 1998, 152, 47–71, doi:10.1016/s0045-7825(97)00181-3. 480 

file:///C:/Users/Administrator/Downloads/10.1111/j.1467-8659.2006.01000.x
file:///C:/Users/Administrator/Downloads/10.1016/j.cag.2014.09.029
file:///C:/Users/Administrator/Downloads/10.1016/j.jcp.2012.08.037
file:///C:/Users/Administrator/Downloads/10.1145/2508363.2508406
file:///C:/Users/Administrator/Downloads/10.1016/s0045-7825(97)00181-3


Mathematics 2021, 9, x FOR PEER REVIEW 13 of 18 
 

 

11. Taniguchi, T.; Sawada, S. Stochastic boundary approaches to many-particle systems coupled to a particle reservoir. Physical 481 
Review E 2017, 95, doi:10.1103/physreve.95.012128. 482 

12. Bai, J.; Zhang, J.; Jin, S.; Du, K.; Wang, Y. A multi-modal-analysis-based simplified seismic design method for high-rise frame- 483 
steel plate shear wall dual structures. Journal of Constructional Steel Research 2021, 177, 106484, doi:10.1016/j.jcsr.2020.106484. 484 

13. Bloor, M.I.G.; Wilson, M.J. Generating blend surfaces using partial differential equations. Computer-Aided Design 1989, 21, 165– 485 
171, doi:10.1016/0010-4485(89)90071-7. 486 

14. Bloor, M.I.G.; Wilson, M.J. Using partial differential equations to generate free-form surfaces. Computer-Aided Design 1990, 22, 487 
202–212, doi:10.1016/0010-4485(90)90049-i. 488 

15. Sheng, Y.; Sourin, A.; Castro, G.G.; Ugail, H. A PDE method for patchwise approximation of large polygon meshes. The Visual 489 
Computer 2010, 26, 975–984, doi:10.1007/s00371-010-0456-8. 490 

16. Ugail, H.; Bloor, M.I.G.; Wilson, M.J. Techniques for interactive design using the PDE method. ACM Transactions on Graphics 491 
1999, 18, 195–212, doi:10.1145/318009.318078. 492 

17. Ahmat, N.; Ugail, H.; Castro, G.G. Method of modelling the compaction behaviour of cylindrical pharmaceutical tablets. In- 493 
ternational Journal of Pharmaceutics 2011, 405, 113–121, doi:10.1016/j.ijpharm.2010.12.006. 494 

18. Chen, C.; Sheng, Y.; Li, F.; Zhang, G.; Ugail, H. A PDE-based head visualization method with CT data. Computer Animation and 495 
Virtual Worlds 2015, 28, e1683, doi:10.1002/cav.1683. 496 

19. Hyun, D.-E.; Yoon, S.-H.; Chang, J.-W.; Seong, J.-K.; Kim, M.-S.; Jüttler, B. Sweep-based human deformation. The Visual Com- 497 
puter 2005, 21, 542–550, doi:10.1007/s00371-005-0343-x. 498 

20. Xu, F.; Mueller, K. Real-time 3D computed tomographic reconstruction using commodity graphics hardware. Physics in Medi- 499 
cine and Biology 2007, 52, 3405–3419, doi:10.1088/0031-9155/52/12/006. 500 

21. MA, A.; YANG, R.; NING, H.; BAI, H.; LI, L.; WU, X. 3D scalp extraction and reconstruction of MRI brain images. Journal of 501 
Computer Applications 2013, 33, 1439–1442, doi:10.3724/sp.j.1087.2013.01439. 502 

22. Yoon, S.-H.; Kim, M.-S. Sweep-based Freeform Deformations. Computer Graphics Forum 2006, 25, 487–496, doi:10.1111/j.1467- 503 
8659.2006.00968.x. 504 

23. Liu, L.; Bajaj, C.; Deasy, J.O.; Low, D.A.; Ju, T. Surface Reconstruction From Non-parallel Curve Networks. Computer Graphics 505 
Forum 2008, 27, 155–163, doi:10.1111/j.1467-8659.2008.01112.x. 506 

24. Li, O.; Chaudhry, E.; Yang, X.; Fu, H.; Fang, J. Composite generalized elliptic curve-based surface reconstruction. International 507 
Conference on Computational Science 2021 508 

25. Farin, G.; Hoschek, J.; Kim, M.- S. Reverse engineering. In Handbook of Computer Aided Geometric Design; Elsevier: Amster- 509 

dam; Boston, Mass., 2002, 26. ISBN 9780444511041.  510 

26. Barton, M.; Pottmann, H.; and Wallner, J. Detection and reconstruction of freeform sweeps. Computer Graphics Forum 2014, 511 

33, 23-32, doi:10.1111/cgf.12287.   512 

27. Kovács, I.; Várady, T.; Cripps, R. Reconstructing swept surfaces from measured data. The Mathematics of Surfaces XIV, Cripps 513 

R. et al. IMA, 2013, 327-344.   514 

28. Barton, M.; Shi, L.; Kilian, M.; Wallner, J. Pottmann, H. Circular arc snakes and kinematic surface generation. Computer 515 

Graphics Forum 2013, 32, 1-10. doi:10.1111/cgf.12020. 516 

29. Wang, S.B.; Xia, Y.; Wang, R.B.; You, L.H.; Zhang, J.J. Optimal NURBS conversion of PDE surface-represented high-speed 517 
train heads. Optimization and Engineering 2019, 20, 907-928. 518 

30. Wang, S.B.; Wang, R.B.; Xia, Y.; Sun, Z.; You, L.H.; Zhang, J.J. Multi-objective aerodynamic optimization of high-speed train 519 
heads based on the PDE parametric modelling. Structural and Multidisciplinary Optimization 2021, 64, 1285-1304.  520 

31. Wang, S.B.; Xiang, N.; Xia, Y.; You, L.H.; Zhang, J.J. Real-time surface manipulation with 𝐶1 continuity through simple and ef- 521 
ficient physics-based deformations. The Visual Computer 2021, 37, 2741-2753. 522 

32. Gonzalez, C.G., Ugail, H., Willis, P., Palmer, I.J. A survey of partial differential equations in geometric design. The Visual 523 
Computer 2008,  24(3), 213-225. 524 

33. You, L.H., Comninos, P., Zhang, J.J. PDE blending surfaces with C2 continuity. Computers & Graphics 2004, 28(6), 895-906.  525 

 526 

Appendix A. Determination of the undetermined functions 𝐴𝑤0(𝑢) (𝑤 = 𝑥, 𝑦, 𝑧) and 527 

𝐴𝑤𝑛(𝑢) and 𝐵𝑤𝑛(𝑢) (𝑤 = 𝑥, 𝑦, 𝑧; 𝑛 = 1, 2, 3, … , 𝑁) 528 

Substituting Eq. (3) into Eq. (2), we have 529 

𝐴𝑥0
(6)(𝑢) + ∑ [𝐴𝑥𝑛

(6)(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑥𝑛
(6)

𝑠𝑖𝑛 𝑛 𝑣]𝑁
𝑛=1 − 𝑎𝑛6 ∑ [𝐴𝑥𝑛(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 +𝑁

𝑛=1 530 

𝐵𝑥𝑛(𝑢) 𝑠𝑖𝑛 𝑛 𝑣] = 0                           (A1) 531 

Substituting Eq. (4) into Eq. (2), we have 532 
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𝐴𝑦0
(6)(𝑢) + ∑ [𝐴𝑦𝑛

(6)(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑦𝑛
(6)

𝑠𝑖𝑛 𝑛 𝜋]𝑁
𝑛=1 − 𝑎𝑛6 ∑ [𝐴𝑦𝑛(𝑢) 𝑐𝑜𝑠 𝑛 𝑣 +𝑁

𝑛=1 533 

𝐵𝑦𝑛(𝑢) 𝑠𝑖𝑛 𝑛 𝑣] = 0           (A2) 534 

Substituting Eq. (5) into Eq. (2), we have 535 

𝐴𝑧0
(6)(𝑢) = 0                     (A3) 536 

The above equations (A1), (A2) and (A3) can be rewritten as the following equa- 537 

tions 538 

𝐴𝑤0
(6)(𝑢) = 0         (𝑤 = 𝑥, 𝑦, 𝑧)                     (A4)                                      539 

𝐴𝑤𝑛
(6) (𝑢) − 𝑎𝑛6𝐴𝑤𝑛(𝑢) = 0   (𝑤 = 𝑥, 𝑦; 𝒏 = 𝟏, 𝟐, 𝟑, … , 𝑵)   (A5)                                                            540 

𝐵𝑤𝑛
(6)(𝑢) − 𝑎𝑛6𝐵𝑤𝑛(𝑢) = 0    (𝑤 = 𝑥, 𝑦; 𝒏 = 𝟏, 𝟐, 𝟑, … , 𝑵)       (A6)                                      541 

The solution to the ordinary differential equation (A4) is: 542 

𝐴𝑤0(𝑢) = 𝑎𝑤0,0 + 𝑎𝑤0,1𝑢 + 𝑎𝑤0,2𝑢2 + 𝑎𝑤0,3𝑢3 + 𝑎𝑤0,4𝑢4 + 𝑎𝑤0,5𝑢5 543 

   (𝑤 = 𝑥, 𝑦, 𝑧)                                  (A7) 544 

Substituting 𝐴𝑤𝑛(𝑢) = 𝑒𝑟𝑛𝑢 into the ordinary differential equation (A5), we obtain 545 

the following characteristic equation: 546 
𝑟𝑛

6 − 𝑎𝑛6 = 0         547 

When 𝑎 > 0,  548 

   𝑟𝑛
3 = ±𝑛3√𝑎         549 

For 𝑟𝑛
3 = 𝑛3√𝑎, we have  550 

𝑟𝑛1,2,3 = 𝑛 √|𝑎|6
= 𝑞0𝑛                        551 

where 552 

𝑞0𝑛 = 𝑛 √|𝑎|6                         (A8) 553 

For 𝑟𝑛
3 = −𝑛3√𝑎, we have  554 

𝑟𝑛4,5,6 = −𝑛 √|𝑎|
6

= −𝑞0𝑛 555 
From the obtained six roots 𝑟𝑛1,2,3,4,5,6, the solution to the differential equation (A5) is 556 

obtained as: 557 
𝐴𝑤𝑛(𝑢) = (𝑎𝑤𝑛,0 + 𝑎𝑤𝑛,1𝑢 + 𝑎𝑤𝑛,2𝑢2)𝑒𝑞0𝑛𝑢 + (𝑎𝑤𝑛,3 + 𝑎𝑤𝑛,4𝑢 + 𝑎𝑤𝑛,5𝑢2)𝑒−𝑞0𝑛𝑢 558 

  (𝑤 = 𝑥, 𝑦; 𝒏 = 𝟏, 𝟐, 𝟑, … , 𝑵)                (A9) 559 

The same method is applied to Eq. (A6) to obtain 560 

𝐵𝑤𝑛(𝑢) = (𝑏𝑤𝑛,0 + 𝑏𝑤𝑛,1𝑢 + 𝑏𝑤𝑛,2𝑢2)𝑒𝑞0𝑛𝑢 + (𝑏𝑤𝑛,3 + 𝑏𝑤𝑛,4𝑢 + 𝑏𝑤𝑛,5𝑢2)𝑒−𝑞0𝑛𝑢 561 

  (𝑤 = 𝑥, 𝑦; 𝒏 = 𝟏, 𝟐, 𝟑, … , 𝑵)                  (A10) 562 

When 𝑎 < 0,  563 

𝑟𝑛
3 = ±𝑛3√−|𝑎| = ±𝑖𝑛3√|𝑎|      (A11) 564 

where 𝑖 is the imaginary  unit.  565 

Cubic roots of the imaginary unit 𝑖  are: 0.5(√3 + 𝑖),  0.5(−√3 + 𝑖) , and – 𝑖 . 566 
Substituting them into Eq. (A11), we obtain the following six roots.   567 

From 𝑟𝑛
3 = 𝑖𝑛3√|𝑎|, we obtain 568 

𝑟𝑛1 = 𝑛 √|𝑎|6
× 0.5(√3 + 𝑖) = 0.5𝑛 √|𝑎|6

(√3 + 𝑖) = 𝑞1𝑛 + 𝑞2𝑛𝑖    569 

𝑟𝑛2 = 𝑛 √|𝑎|6
× 0.5(−√3 + 𝑖) = 0.5𝑛 √|𝑎|6

(−√3 + 𝑖) = −𝑞1𝑛 + 𝑞2𝑛𝑖   570 

𝑟𝑛3 = 𝑛 √|𝑎|6
× (−𝑖) = −2𝑞2𝑛𝑖           (A12) 571 

where 572 

𝑞1𝑛 = 0.5√3𝑛 √|𝑎|6
               573 

𝑞2𝑛 = 0.5𝑛 √|𝑎|6
                  (A13) 574 

From 𝑟𝑛
3 = −𝑖𝑛3√|𝑎|, we obtain 575 

𝑟𝑛4 = −𝑛 √|𝑎|6
× 0.5(√3 + 𝑖) = −0.5𝑛 √|𝑎|6

(√3 + 𝑖) = −𝑞1𝑛 − 𝑞2𝑛𝑖   576 

𝑟𝑛5 = −𝑛 √|𝑎|6
× 0.5(−√3 + 𝑖) = −0.5𝑛 √|𝑎|6

(−√3 + 𝑖) = 𝑞1𝑛 − 𝑞2𝑛𝑖   577 

𝑟𝑛6 = −𝑛 √|𝑎|
6

× (−𝑖) = 2𝑞2𝑛𝑖 578 
From the obtained six roots 𝑟𝑛1,2,3,4,5,6, the solution to the differential equation (A5) is 579 

obtained as: 580 
𝐴𝑤𝑛(𝑢) = 𝑎𝑤𝑛,0𝑐𝑜𝑠2𝑞2𝑛𝑢 + 𝑎𝑤𝑛,1𝑠𝑖𝑛2𝑞2𝑛𝑢 + 𝑎𝑤𝑛,2𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑎𝑤𝑛,3𝑒𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 581 

+𝑎𝑤𝑛,4𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑎𝑤𝑛,5𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢 582 
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   (𝑤 = 𝑥, 𝑦; 𝒏 = 𝟏, 𝟐, 𝟑, … , 𝑵)            (A14)  583 

Using the same method to solve Eq. (A6), we obtain 584 
𝐵𝑤𝑛(𝑢) = 𝑏𝑤𝑛,0𝑐𝑜𝑠2𝑞2𝑛𝑢 + 𝑏𝑤𝑛,1𝑠𝑖𝑛2𝑞2𝑛𝑢 + 𝑏𝑤𝑛,2𝑒𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑏𝑤𝑛,3𝑒𝑞1𝑛𝑢 𝑠𝑖𝑛 𝑞2𝑛𝑢 585 

+𝑏𝑤𝑛,4𝑒−𝑞1𝑛𝑢𝑐𝑜𝑠𝑞2𝑛𝑢 + 𝑏𝑤𝑛,5𝑒−𝑞1𝑛𝑢𝑠𝑖𝑛𝑞2𝑛𝑢            586 

(𝑤 = 𝑥, 𝑦; 𝒏 = 𝟏, 𝟐, 𝟑, … , 𝑵)              (A15) 587 

Appendix B. Determination of the undetermined functions 𝐴𝑤0
𝑃2 (𝑢) (𝑤 = 𝑥, 𝑦, 𝑧) and 588 

𝐴𝑤𝑛
𝑃2 (𝑢) and 𝐵𝑤𝑛

𝑃2 (𝑢) (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁) 589 

In order to determine the undetermined functions 𝐴𝑤0
𝑃2 (𝑢) (𝑤 = 𝑥, 𝑦, 𝑧) and 𝐴𝑤𝑛

𝑃2 (𝑢) 590 

and 𝐵𝑤𝑛
𝑃2 (𝑢) (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁), we first calculate the first and second partial de- 591 

rivatives of the PDE surface patch 1 at 𝑢 = 0, i. e., on the curve  𝐂4. 592 

Substituting Eqs. (14) and (26) into Eq. (24), we obtain the following equations de- 593 

scribing the continuity of the first and second partial derivatives. 594 

𝜕𝐴𝑤0
𝑃2 (1)

𝜕𝑢
+ ∑ [

∂Awn
P2 (1)

∂𝑢
𝑐𝑜𝑠 𝑛 𝑣 +

∂𝐵𝑤𝑛
𝑃2 (1)

∂𝑢
𝑠𝑖𝑛 𝑛 𝑣] =

𝑁

𝑛=1

𝜕𝐴𝑤0
𝑃1 (1)

𝜕𝑢
595 

+ ∑ [
∂Awn

P1 (1)

∂𝑢
𝑐𝑜𝑠 𝑛 𝑣 +

∂𝐵𝑤𝑛
𝑃1 (1)

∂𝑢
𝑠𝑖𝑛 𝑛 𝑣]

𝑁

𝑛=1

 596 

𝜕2𝐴𝑤0
𝑃2 (1)

𝜕𝑢2
+ ∑ [

∂2Awn
P2 (1)

∂𝑢2
𝑐𝑜𝑠 𝑛 𝑣 +

∂2𝐵𝑤𝑛
𝑃2 (1)

∂𝑢2
𝑠𝑖𝑛 𝑛 𝑣] =

𝜕2𝐴𝑤0
𝑃1 (1)

𝜕𝑢2

𝑁

𝑛=1

597 

+ ∑ [
∂2Awn

P1 (1)

∂𝑢2
𝑐𝑜𝑠 𝑛 𝑣 +

∂2𝐵𝑤𝑛
𝑃1 (1)

∂𝑢2
𝑠𝑖𝑛 𝑛 𝑣]

𝑁

𝑛=1

 598 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                  (B1) 599 

Equalizing the coefficients of the constant terms, the 𝑐𝑜𝑠 𝑛 𝑣 terms, and the 𝑠𝑖𝑛 𝑛 𝑣 600 

terms, respectively, the above equations are changed into:  601 

𝜕𝐴𝑤0
𝑃2 (1)

𝜕𝑢
=

𝜕𝐴𝑤0
𝑃1 (1)

𝜕𝑢
 602 

𝜕2𝐴𝑤0
𝑃2 (1)

𝜕𝑢2
=

𝜕2𝐴𝑤0
𝑃1 (1)

𝜕𝑢2
 603 

(𝑤 = 𝑥, 𝑦, 𝑧)                                                          (B2) 604 

∂Awn
P2 (1)

∂𝑢
=

∂Awn
P1 (1)

∂𝑢
 605 

∂Bwn
P2 (1)

∂𝑢
=

∂𝐵wn
P1 (1)

∂𝑢
 606 

∂2Awn
P2 (1)

∂𝑢2
=

∂2Awn
P1 (1)

∂𝑢2
 607 

∂2Bwn
P2 (1)

∂𝑢2
=

∂2𝐵wn
P1 (1)

∂𝑢2
 608 

(𝑤 = 𝑥, 𝑦;  𝑛 = 1, 2, 3, … , 𝑁)                                           (B3) 609 

 Introducing the superscript P1 into Eqs. (10) and (11) and setting 𝑢 = 0, we obtain 610 

the following equations: 611 
∂𝐴𝑤0

𝑃1 (0)

∂𝑢
= 𝑎𝑤0,1

𝑃1      (𝑤 = 𝑥, 𝑦, 𝑧)            (B4) 612 

    
∂𝐴𝑤𝑛

𝑃1 (0)

∂𝑢
= 2𝑎𝑤𝑛,1

𝑃1 𝑞2𝑛 + 𝑎𝑤𝑛,2
𝑃1 𝑞1𝑛 + 𝑎𝑤𝑛,3

𝑃1 𝑞2𝑛 − 𝑎𝑤𝑛,4
𝑃1 𝑞1𝑛 + 𝑎𝑤𝑛,5

𝑃1 𝑞2𝑛    613 

∂𝐵𝑤𝑛
𝑃1 (0)

∂𝑢
= 2𝑏𝑤𝑛,1

𝑃1 𝑞2𝑛 + 𝑏𝑤𝑛,2
𝑃1 𝑞1𝑛 + 𝑏𝑤𝑛,3

𝑃1 𝑞2𝑛 − 𝑏𝑤𝑛,4
𝑃1 𝑞1𝑛 + 𝑏𝑤𝑛,5

𝑃1 𝑞2𝑛    614 

 (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁)               (B5) 615 

Introducing the superscript P1 into Eqs. (12) and (13) and setting 𝑢 = 0, we obtain 616 

the following equations: 617 
∂2𝐴𝑤0

𝑃1 (0)

∂𝑢2 = 2𝑎𝑤0,2
𝑃1     (𝑤 = 𝑥, 𝑦, 𝑧)                          (B6) 618 

∂2𝐴𝑤𝑛
𝑃1 (0)

∂𝑢2 = −4𝑎𝑤𝑛,0
𝑃1 𝑞2𝑛

2 + 𝑎𝑤𝑛,2
𝑃1 (𝑞1𝑛

2 𝑒𝑞1𝑛𝑢 − 𝑞2𝑛
2 𝑒𝑞1𝑛𝑢) + 2𝑎𝑤𝑛,3

𝑃1 𝑞1𝑛𝑞2𝑛 +    619 
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𝑎𝑤𝑛,4
𝑃1 (𝑞1𝑛

2 − 𝑞2𝑛
2 ) − 2𝑎𝑤𝑛,5

𝑃1 𝑞1𝑛𝑞2𝑛        620 
∂2𝐵𝑤𝑛

𝑃1 (0)

∂𝑢2 = −4𝑏𝑤𝑛,0
𝑃1 𝑞2𝑛

2 + 𝑏𝑤𝑛,2
𝑃1 (𝑞1𝑛

2 − 𝑞2𝑛
2 ) + 2𝑏𝑤𝑛,3

𝑃1 𝑞1𝑛𝑞2𝑛 +     621 

𝑏𝑤𝑛,4
𝑃1 (𝑞1𝑛

2 − 𝑞2𝑛
2 ) − 2𝑏𝑤𝑛,5

𝑃1 𝑞1𝑛𝑞2𝑛        622 

 (𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁)               (B7) 623 

Introducing the superscript P2 into Eqs. (10) and (11) and setting 𝑢 = 1, we obtain 624 

the following equations: 625 
𝜕𝐴𝑤0

𝑃2 (1)

𝜕𝑢
= 𝑎𝑤0,1

𝑃2 + 2𝑎𝑤0,2
𝑃2 + 3𝑎𝑤0,3

𝑃2 + 4𝑎𝑤0,4
𝑃2 + 5𝑎𝑤0,5

𝑃2            626 

(𝑤 = 𝑥, 𝑦, 𝑧)       (B8) 627 
∂Awn

P2 (1)

∂𝑢
= −2𝑎𝑤𝑛,0

𝑃2 𝑞2𝑛𝑠𝑖𝑛2𝑞2𝑛 + 2𝑎𝑤𝑛,1
𝑃2 𝑞2𝑛𝑐𝑜𝑠2𝑞2𝑛 +       628 

𝑎𝑤𝑛,2
𝑃2 (𝑞1𝑛𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 629 

𝑎𝑤𝑛,3
𝑃2 (𝑞1𝑛𝑒𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 + 𝑞2𝑛𝑒𝑞1𝑛 𝑐𝑜𝑠 𝑞2𝑛) − 630 

𝑎𝑤𝑛,4
𝑃2 (𝑞1𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 𝑞2𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 631 

𝑎𝑤𝑛,5
𝑃2 (−𝑞1𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 + 𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛)      632 

∂𝐵𝑤𝑛
𝑃2 (1)

∂𝑢
= −2𝑏𝑤𝑛,0

𝑃2 𝑞2𝑛𝑠𝑖𝑛2𝑞2𝑛 + 2𝑏𝑤𝑛,1
𝑃2 𝑞2𝑛𝑐𝑜𝑠𝑞2𝑛 +       633 

𝑏𝑤𝑛,2
𝑃2 (𝑞1𝑛𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 634 

𝑏𝑤𝑛,3
𝑃2 (𝑞1𝑛𝑒𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 + 𝑞2𝑛𝑒𝑞1𝑛 𝑐𝑜𝑠 𝑞2𝑛) − 635 

𝑏𝑤𝑛,4
𝑃2 (𝑞1𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 𝑞2𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 636 

𝑏𝑤𝑛,5
𝑃2 (−𝑞1𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 + 𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛)      637 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁)        (B9) 638 

Introducing the superscript P2 into Eqs. (12) and (13) and setting 𝑢 = 1, we obtain 639 

the following equations: 640 
∂2𝐴𝑤0(1)

∂𝑢2 = 2𝑎𝑤0,2
𝑃2 + 6𝑎𝑤0,3

𝑃2 + 12𝑎𝑤0,4
𝑃2 + 20𝑎𝑤0,5

𝑃2        641 

(𝑤 = 𝑥, 𝑦, 𝑧)       (B10) 642 
𝜕2𝐴𝑤𝑛

𝑃2 (1)

𝜕𝑢2
= −4𝑎𝑤𝑛,0

𝑃2 𝑞2𝑛
2 𝑐𝑜𝑠2𝑞2𝑛 − 4𝑎𝑤𝑛,1

𝑃2 𝑞2𝑛
2 𝑠𝑖𝑛2𝑞2𝑛 + 643 

𝑎𝑤𝑛,2
𝑃2 (𝑞1𝑛

2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 𝑞2𝑛
2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) + 644 

𝑎𝑤𝑛,3
𝑃2 (𝑞1𝑛

2 𝑒𝑞1𝑛 sin 𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛 cos 𝑞2𝑛 − 𝑞2𝑛
2 𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 645 

𝑎𝑤𝑛,4
𝑃2 (𝑞1𝑛

2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛 sin 𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) + 646 

𝑎𝑤𝑛,5
𝑃2 (𝑞1𝑛

2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛)   647 

𝜕2𝐵𝑤𝑛
𝑃2 (1)

𝜕𝑢2
= −4𝑏𝑤𝑛,0

𝑃2 𝑞2𝑛
2 𝑐𝑜𝑠2𝑞2𝑛 − 4𝑏𝑤𝑛,1

𝑃2 𝑞2𝑛
2 𝑠𝑖𝑛2𝑞2𝑛 + 648 

𝑏𝑤𝑛,2
𝑃2 (𝑞1𝑛

2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 𝑞2𝑛
2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) + 649 

𝑏𝑤𝑛,3
𝑃2 (𝑞1𝑛

2 𝑒𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛 𝑐𝑜𝑠 𝑞2𝑛 − 𝑞2𝑛
2 𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 650 

𝑏𝑤𝑛,4
𝑃2 (𝑞1𝑛

2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) + 651 

𝑏𝑤𝑛,5
𝑃2 (𝑞1𝑛

2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) 652 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁)         (B11) 653 

Substituting Eqs. (B4), (B6), (B8) and (B10) into Eq. (B2), the following equations are 654 

obatined.  655 

𝑎𝑤0,1
𝑃2 + 2𝑎𝑤0,2

𝑃2 + 3𝑎𝑤0,3
𝑃2 + 4𝑎𝑤0,4

𝑃2 + 5𝑎𝑤0,5
𝑃2 = 𝑎𝑤0,1

𝑃1  656 

2𝑎𝑤0,2
𝑃2 + 6𝑎𝑤0,3

𝑃2 + 12𝑎𝑤0,4
𝑃2 + 20𝑎𝑤0,5

𝑃2 = 2𝑎𝑤0,2
𝑃1  657 

(𝑤 = 𝑥, 𝑦, 𝑧)         (B12) 658 

Substituting Eqs. (B5), (B7), (B9) and (B11) into Eq. (B3), the following equations are 659 

obatined.  660 

−2𝑎𝑤𝑛,0
𝑃2 𝑞2𝑛𝑠𝑖𝑛2𝑞2𝑛 + 2𝑎𝑤𝑛,1

𝑃2 𝑞2𝑛𝑐𝑜𝑠2𝑞2𝑛 + 𝑎𝑤𝑛,2
𝑃2 (𝑞1𝑛𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) 661 

+ 𝑎𝑤𝑛,3
𝑃2 (𝑞1𝑛𝑒𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 + 𝑞2𝑛𝑒𝑞1𝑛 𝑐𝑜𝑠 𝑞2𝑛) 662 

− 𝑎𝑤𝑛,4
𝑃2 (𝑞1𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 𝑞2𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 𝑎𝑤𝑛,5

𝑃2 (−𝑞1𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 663 
+ 𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) 664 
= 2𝑎𝑤𝑛,1

𝑃1 𝑞2𝑛 + 𝑎𝑤𝑛,2
𝑃1 𝑞1𝑛 + 𝑎𝑤𝑛,3

𝑃1 𝑞2𝑛 − 𝑎𝑤𝑛,4
𝑃1 𝑞1𝑛 + 𝑎𝑤𝑛,5

𝑃1 𝑞2𝑛 665 

−4𝑎𝑤𝑛,0
𝑃2 𝑞2𝑛

2 𝑐𝑜𝑠2𝑞2𝑛 − 4𝑎𝑤𝑛,1
𝑃2 𝑞2𝑛

2 𝑠𝑖𝑛2𝑞2𝑛 + 𝑎𝑤𝑛,2
𝑃2 (𝑞1𝑛

2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 666 

𝑞2𝑛
2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) + 𝑎𝑤𝑛,3

𝑃2 (𝑞1𝑛
2 𝑒𝑞1𝑛 sin 𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛 cos 𝑞2𝑛 − 𝑞2𝑛

2 𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 667 

𝑎𝑤𝑛,4
𝑃2 (𝑞1𝑛

2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛 sin 𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) + 𝑎𝑤𝑛,5

𝑃2 (𝑞1𝑛
2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 668 



Mathematics 2021, 9, x FOR PEER REVIEW 17 of 18 
 

 

2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) = −4𝑎𝑤𝑛,0

𝑃1 𝑞2𝑛
2 + 𝑎𝑤𝑛,2

𝑃1 (𝑞1𝑛
2 𝑒𝑞1𝑛𝑢 − 𝑞2𝑛

2 𝑒𝑞1𝑛𝑢) + 669 

2𝑎𝑤𝑛,3
𝑃1 𝑞1𝑛𝑞2𝑛 + 𝑎𝑤𝑛,4

𝑃1 (𝑞1𝑛
2 − 𝑞2𝑛

2 ) − 2𝑎𝑤𝑛,5
𝑃1 𝑞1𝑛𝑞2𝑛   670 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁)             (B13) 671 
−2𝑏𝑤𝑛,0

𝑃2 𝑞2𝑛𝑠𝑖𝑛2𝑞2𝑛 + 2𝑏𝑤𝑛,1
𝑃2 𝑞2𝑛𝑐𝑜𝑠𝑞2𝑛 + 𝑏𝑤𝑛,2

𝑃2 (𝑞1𝑛𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) 672 

+ 𝑏𝑤𝑛,3
𝑃2 (𝑞1𝑛𝑒𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 + 𝑞2𝑛𝑒𝑞1𝑛 𝑐𝑜𝑠 𝑞2𝑛) 673 

− 𝑏𝑤𝑛,4
𝑃2 (𝑞1𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 𝑞2𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) + 𝑏𝑤𝑛,5

𝑃2 (−𝑞1𝑛𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 674 
+ 𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) 675 
= 2𝑏𝑤𝑛,1

𝑃1 𝑞2𝑛 + 𝑏𝑤𝑛,2
𝑃1 𝑞1𝑛 + 𝑏𝑤𝑛,3

𝑃1 𝑞2𝑛 − 𝑏𝑤𝑛,4
𝑃1 𝑞1𝑛 + 𝑏𝑤𝑛,5

𝑃1 𝑞2𝑛 676 

−4𝑏𝑤𝑛,0
𝑃2 𝑞2𝑛

2 𝑐𝑜𝑠2𝑞2𝑛 − 4𝑏𝑤𝑛,1
𝑃2 𝑞2𝑛

2 𝑠𝑖𝑛2𝑞2𝑛 677 

+ 𝑏𝑤𝑛,2
𝑃2 (𝑞1𝑛

2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 𝑞2𝑛
2 𝑒𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) 678 

+ 𝑏𝑤𝑛,3
𝑃2 (𝑞1𝑛

2 𝑒𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒𝑞1𝑛 𝑐𝑜𝑠 𝑞2𝑛 − 𝑞2𝑛
2 𝑒𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) 679 

+ 𝑏𝑤𝑛,4
𝑃2 (𝑞1𝑛

2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 + 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛 𝑠𝑖𝑛 𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛) 680 

+ 𝑏𝑤𝑛,5
𝑃2 (𝑞1𝑛

2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛 − 2𝑞1𝑛𝑞2𝑛𝑒−𝑞1𝑛𝑐𝑜𝑠𝑞2𝑛 − 𝑞2𝑛
2 𝑒−𝑞1𝑛𝑠𝑖𝑛𝑞2𝑛) 681 

= −4𝑏𝑤𝑛,0
𝑃1 𝑞2𝑛

2 + 𝑏𝑤𝑛,2
𝑃1 (𝑞1𝑛

2 − 𝑞2𝑛
2 ) + 2𝑏𝑤𝑛,3

𝑃1 𝑞1𝑛𝑞2𝑛 + 𝑏𝑤𝑛,4
𝑃1 (𝑞1𝑛

2 − 𝑞2𝑛
2 ) 682 

− 2𝑏𝑤𝑛,5
𝑃1 𝑞1𝑛𝑞2𝑛 683 

(𝑤 = 𝑥, 𝑦; 𝑛 = 1, 2, 3, … , 𝑁)             (B14) 684 

Substituting Eq. (26) into Eq. (25), the four equations in Eq. (25) are changed into 685 

the following ones: 686 

𝐴𝑥0
𝑃2(𝑖/3) + ∑[𝐴𝑥𝑛

𝑃2(𝑖/3) 𝑐𝑜𝑠 𝑛 𝑣 + 𝐵𝑥𝑛
𝑃2(𝑖/3) 𝑠𝑖𝑛 𝑛 𝑣]

𝑁

𝑛=1

 687 

= 𝑎𝑥0
𝐶𝑖+1 + ∑(𝑎𝑥𝑛

𝐶𝑖+1

𝑁

𝑛=1

𝑐𝑜𝑠 𝑛 𝑣 + 𝑏𝑥𝑛
𝐶𝑖+1 𝑠𝑖𝑛 𝑛 𝑣) 688 

𝐴𝑦0
𝑃2(𝑖/3) + ∑[𝐴𝑦𝑛

𝑃2 (𝑖/3) 𝑠𝑖𝑛 𝑛 𝑣 + 𝐵𝑦𝑛
𝑃2(𝑖/3) 𝑐𝑜𝑠 𝑛 𝑣]

𝑁

𝑛=1

 689 

= 𝑎𝑦0
𝐶𝑖+1 + ∑(𝑎𝑦𝑛

𝐶𝑖+1

𝑁

𝑛=1

𝑠𝑖𝑛 𝑛 𝑣 + 𝑏𝑦𝑛
𝐶𝑖+1 𝑐𝑜𝑠 𝑛 𝑣) 690 

𝐴𝑧0
𝑃2(𝑖/3) = 𝑧𝑐

𝐶𝑖+1 691 
(𝑖 = 0, 1, 2, 3)        (B15) 692 

The above equation (B15) can be changed into the following three groups of equa- 693 

tions 694 

𝐴𝑤0
𝑃2 (𝑖/3) = 𝑎𝑤0

𝐶𝑖+1 695 
 (𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 0, 1, 2, 3)        (B16) 696 

𝐴𝑤𝑛
𝑃2 (𝑖/3) = 𝑎𝑤𝑛

𝐶𝑖+1  697 
(𝑤 = 𝑥, 𝑦;  𝑖 = 0, 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)        (B17) 698 

𝐵𝑤𝑛
𝑃2 (𝑖/3) = 𝑏𝑤𝑛

𝐶𝑖+1  699 
(𝑤 = 𝑥, 𝑦;  𝑖 = 0, 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)          (B18) 700 

     where 𝑎𝑧0
𝐶𝑖+1 = 𝑧𝑐

𝐶𝑖+1  (𝑖 = 0, 1, 2, 3). 701 

Following the same method used to obtain Eqs. (21)-(23), we obtain the following 702 

equations from Eqs. (B16)-(B18). 703 

𝑎𝑤0,0
𝑃2 + 𝑖𝑎𝑤0,1

𝑃2 /3 + 𝑖2𝑎𝑤0,2
𝑃2 /9 + 𝑖3𝑎𝑤0,3

𝑃2 /27 + 𝑖4𝑎𝑤0,4
𝑃2 /81 + 𝑖5𝑎𝑤0,5

𝑃2 /243 = 𝑎𝑤0
𝐶𝑖+1 704 

(𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 0, 1, 2, 3)       (B19) 705 

𝑎𝑤𝑛,0
𝑃2 𝑐𝑜𝑠2𝑖𝑞2𝑛/3 + 𝑎𝑤𝑛,1

𝑃2 𝑠𝑖𝑛2𝑖𝑞2𝑛/3 + 𝑎𝑤𝑛,2
𝑃2 𝑒

𝑖𝑞1𝑛
3 𝑐𝑜𝑠𝑖𝑞2𝑛/3 + 𝑎𝑤𝑛,3

𝑃2 𝑒
𝑖𝑞1𝑛

3 𝑠𝑖𝑛
𝑖𝑞2𝑛

3
706 

+ 𝑎𝑤𝑛,4
𝑃2 𝑒−

𝑖𝑞1𝑛
3 𝑐𝑜𝑠𝑖𝑞2𝑛 3⁄ + 𝑎𝑤𝑛,5

𝑃2 𝑒−
𝑖𝑞1𝑛

3 𝑠𝑖𝑛𝑖𝑞2𝑛/3 = 𝑎𝑤𝑛
𝐶𝑖+1 707 

(𝑤 = 𝑥, 𝑦;  𝑖 = 0, 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)             (B20) 708 

𝑏𝑤𝑛,0
𝑃2 𝑐𝑜𝑠2𝑖𝑞2𝑛/3 + 𝑏𝑤𝑛,1

𝑃2 𝑠𝑖𝑛2𝑖𝑞2𝑛/3 + 𝑏𝑤𝑛,2
𝑃2 𝑒

𝑖𝑞1𝑛
3 𝑐𝑜𝑠𝑖𝑞2𝑛/3 + 𝑏𝑤𝑛,3

𝑃2 𝑒
𝑖𝑞1𝑛

3 𝑠𝑖𝑛
𝑖𝑞2𝑛

3
709 

+ 𝑏𝑤𝑛,4
𝑃2 𝑒−

𝑖𝑞1𝑛
3 𝑐𝑜𝑠𝑖𝑞2𝑛/3 + 𝑏𝑤𝑛,5

𝑃2 𝑒−
𝑖𝑞1𝑛

3 𝑠𝑖𝑛𝑖𝑞2𝑛/3 = 𝑏𝑤𝑛
𝐶𝑖+1  710 

(𝑤 = 𝑥, 𝑦;  𝑖 = 0, 1, 2, 3; 𝑛 = 1, 2, 3, … , 𝑁)             (B21) 711 
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Solving the six equations in Eqs. (B12) and (B19), we determine the six undeter- 712 

mined constants 𝑎𝑤0,𝑖
𝑃2  (𝑤 = 𝑥, 𝑦, 𝑧;  𝑖 = 0, 1, 2, 3, 4, 5) . Solving the six equations in Eqs. 713 

(B13) and (B20), we determine the six undetermined constants 𝑎𝑤𝑛,𝑖
𝑃2  ( 𝑤 = 𝑥, 𝑦;  𝑛 = 714 

1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5). Solving the six equations in Eqs. (B14) and (B21), we de- 715 

termine the six undetermined constants 𝑏𝑤𝑛,𝑖
𝑃2  (𝑤 = 𝑥, 𝑦;  𝑛 = 1, 2, 3, … , 𝑁;  𝑖 = 0, 1, 2, 3, 4, 5).  716 

 717 

 718 


