
 

 
 
 

Classification of Authentic and Tampered Video 
Using Motion Residual and Parasitic Layers 

 
 

ABSTRACT These days, videos can be easily recorded, altered and shared on social and electronic media 

for deception and false propaganda. However, due to sophisticated nature of the content alteration tools, 

alterations remain inconspicuous to the naked eye and it is a challenging task to differentiate between 

authentic and tampered videos. During the process of video tampering the traces of objects, which are 

removed or modified, remain in the frames of a video. Based on this observation, in this study, a new 

method is introduced for discriminating authentic and tampered video clips. This method is based on deep 

model, which consists of three types of layers: motion residual (MR), convolutional neural network (CNN), 

and parasitic layers. The MR layer highlights the tampering traces by aggregation of frames. The CNN 

layers encode these tampering traces and are learned using transfer learning. Finally, parasitic layers classify 

the video clip (VC) as authentic or tampered. The parasitic layers are learned using an efficient learning 

method based on extreme learning theory; they enhance the performance in terms of efficiency and accuracy. 

Intensive experiments were performed on various benchmark datasets to validate the performance and the 

robustness of the method; it achieved 98.89% accuracy. Comparative analysis shows that the proposed 

method outperforms the state-of-the-art methods. 

 

INDEX TERMS Spatial forgery detection, motion residual, deep learning, extreme learning machine, 

parasitic learning. 

 

 

 
I. INTRODUCTION 

In the digital era of 21st century, mobile phones, personal 

digital assistants (PDAs) and digital camcorders are easily 

available to acquire the videos. Moreover, these videos can 

be redistributed for different purposes like video conferences, 

surveillance systems, information propagation to the media 

houses and social media websites. The quality and contents 

of the videos can be modified with different video editing 

tools. With the influx of these user-friendly video editing 

tools, the novice user can alter the contents of the videos 

to make false propaganda on the social media for their own 

 

 

 
purposes [1], [2]. Now a day, tampering detection in videos 

is extremely difficult with naked eyes. 

Videos tampering attacks can be categorized as: (i) spa- 

tial domain, (ii) temporal domain, and (iii) spatio-temporal 

domain [3]. In spatial domain, different objects can be added, 

removed or replaced within a video frame or a series of 

frames, whereas in the temporal domain, a number of frames 

are added, removed or replaced from the video [4]. Spatio- 

temporal domain is the combination of spatial and temporal 

domain. 

Many techniques are proposed to detect forgery in images 

[5]–[7]. However, these cannot be considered effectively in 

the present form for the detection of forgery in the frames 

of videos due to the following reasons. Firstly, videos are 

encoded and compressed before storage and transmission 
 



 

 
 

 

 

 

 

 

 
 

FIGURE 1.  Tampering in spatial domain. (a) Authentic video frames. (b) Tampered video frames. 

 
 

 
FIGURE 2. Categories of spatial tampering detection techniques. 

 

 
to reduce the amount of data in video frames. Secondly, 

computational complexity of these techniques becomes very 

high when applied to a large number of video frames. Thirdly, 

forgery traces are also available in consecutive frames of a 

video. Such features are not available in case of images. 

In spatial domain, tampering can be done in two different 

ways i.e., copy move and splicing. In copy-move the object/s 

is copied and pasted in frames of the same video and in 

case of removing the object/s from the video, the region/s 

is filled with the neighboring pixels from the same frame 

of that video whereas, in case of splicing the tampering is 

done with the object/s from different video/s. The focus of 

this paper is on tampering detection in the spatial domain 

of videos. An example of spatial tampering is shown in 

Fig. 1. Authentic video frames are presented in Fig. 1 (a) 

whereas Fig. 1 (b) describes frames of the tampered video. 

The actual information is concealed by removing the object 

in red rectangle shown in Fig 1(a) from all the frames F1, F2, 

. . . , Fn and filled that areas with a block of pixels from the 

same frame of a video. In this way, the viewers are misguided 

by false information. The purpose of this type of tampering is 

not simple retouching or format change, but to hide the facts 

for propaganda or criminal intentions, which is dangerous and 

has negative impact on society. 

 
A. RELATED WORK 

The existing technivided into two categories: Active and Pas- 

sive [8]. Passive techniques do not need any pre-embedded 

data such as watermark and signatures unlike active tech- 

niques. The focus of this study is on passive techniques in 

spatial domain and as such we give an overview of the state- 

of-the-art related to this problem in the following paragraphs. 

Different techniques proposed to detect tampering in spa- 

tial domain can be divided into various categories based on 

the types of features as shown in Fig. 2. In first category the 

features are extracted based on noise. Kobayashin et al. [9] 

employed noise characteristics, Hyun et al. [10] detected 

forgery using sensor patter noise (SPN). Panday et al. [11] 

worked with SIFT features, noise residual and correlation 

to detect copy-move forgery. Goodwin and Chetty [12] also 

used noise residual, quantization features and their trans- 

formation in cross-model subspace to detect the copy-move 

forgery. 

In second category the features are extracted based on 

frequency domain. Hsu et al. [13] used wavelet co-efficient 

thresholding and Bayesian Classifier. Su et al. [14] applied 

exponential-Fourier moments (EFM) for localizing the dupli- 

cating region in the frames of the video. In [15] moment 

feature of wavelet co-efficient and optical flow are combined 

 
 



 

 

 

 

 

 
 

with SVM to detect the facial expression re-enacted forgery 

(FERF). 

The features are calculated thourgh statistical method in 

third category. Richao et al. [8] worked on statistical features. 

Bagiwa et al. [16] explored statistical correlation of blurring 

artifact. Singh and Aggarwal [17] used pixels correlation, 

noise inconsistency and discrete fractional fourier transfor- 

mation. Singh and Singh [18] exploited the correlation coef- 

ficient to find the duplicated regions in the videos. 

Fourth category of techniques is worked on optical flow 

and motion residual. Bidokhti and Ghaemmaghami [19] pro- 

posed a technique based on optical flow to detect a copy-move 

forgery from MPEG videos In [20] block based motion esti- 

mation is used to extract motion from the adjacent frames and 

then the magnitude and orientation is employed to differenti- 

ate the authentic and forged video. Al-sanjary et al. [21] pro- 

posed optical flow inconsistencies and dynamic time warping 

(DTW) matching algorithm to detect copy-move forgery in 

videos. Bestagini et al. [22] utilized Zero-motion video resid- 

ual. Chen et al. [23] used motion residual and steganography 

features to detect the video forgery. 

In fifth category the Subramanyam et al. [24] exploited 

histogram of oriented gradients (HOG) features. The HOG 

and its variants employ gradient orientation, which cannot 

describe the local texture micro-patterns and variations effec- 

tively. Also, it is not robust against noise [25] and does 

not take into account the strength of edges. Su and Li [26] 

detected copy-move forgery in first frame of the video by 

employing MISIFT and used spatio-temporal context learn- 

ing to detect the forged areas from remaining frames of the 

video. Su et al. [27] used K-SVD (k-singular value decom- 

position) algorithm and K-means. The technique presented in 

[28] exposed the forgery in videos that have ballistic motion. 

All above discussed techniques although achieved good 

accuracy but with some limitations such as, these tech- 

niques only work on specific formats, specific resolutions, 

selected datasets and handcrafted features are used to detect 

the forgery. Similarly Yao et al. [29] utilized a CNN to 

extract high dimension features and used absolute difference 

between successive frames to cut down the temporal redun- 

dancy. A max pooling and high pass filter layers are used 

to minimize the computational complexity and to increase 

the residual, which left during the tampering process respec- 

tively. Zampoglou et al. [30] employed Q4 and Cobalt foren- 

sic filters with pre-trained GooLeNet and ResNet networks to 

detect the video forgery. These techniques although produced 

good results, however cannot work well in presence of small 

size tampering. 

 
B. MULTIMEDIA FORENSIC USING DEEP LEARNIN 

In recent years, deep neural networks, such as deep belief 

network (DBN) [31], stacked auto encoder (SE) [32] and 

convolutional neural network (CNN) [33]–[35] have shown 

the capability of learning robust feature representations. 

This allows to generalize across a wide variety of com- 

puter vision (CV) tasks such as image classification [36], 

speech recognition [37], image forensic [6] etc. However, 

a deep model requires a lot of time, a large amount of data 

and a powerful computing environment for its training from 

scratch. The collection of a large amount of domain specific 

data and its labeling is a tedious and costly task, and even 

acquiring a sufficient amount of data may not be practical in 

many cases [38], [39]. In such cases, the only way to employ 

deep learning is to use transfer learning (TL), which unlocks 

a new stream of techniques. In TL, a deep model is trained 

using a dataset from a related domain and then it is employed 

for the application under consideration. There are two main 

approaches for TL: (1) first pre-train a deep model using the 

data from a related domain and then fine-tune the weights 

using the data from the domain of the problem, (2) use trained 

deep model as a feature extractor by freezing all layers other 

than the last classification layers, extract features and pass 

them to a classifier such as support vector machine (SVM) for 

classification [40]. The second approach has been effectively 

employed for many recognition and classification tasks [41]. 

For video tamper detection problem, enough data is not 

available to train a deep CNN model from scratch. As such, 

the second TL approach is employed to propose a method 

based on deep model, which comprises three types of layers 

i.e., motion residual, CNN and parasitic layers. This deep 

model is used in our method for the classification of authentic 

and tampered video clips (VCs). 

The outstanding performance of deep CNN in many appli- 

cations motivated the research in this direction and many 

deep CNN models such as AlexNet [36], GoogleNet [42] and 

VGG-16 [35] have been proposed. These models have shown 

far better performance than hand-engineered techniques in 

many applications. Different existing deep CNN models are 

examined and selected VGG-16 for our deep model because 

its convolutional layers contain kernels of small size i.e., 3×3, 

which is suitable to characterize the small tampering traces. 

We employed VGG-16 model, pre-trained on the large scale 

ImageNet datase; by removing its last fully connected (FC) 

layers, we used its leftover layers as CNN layers in our deep 

model. For decision making, the parasitic layers in the deep 

model rely on the discriminant features extracted by the CNN 

layers and motion residual layer, just like parasites in biology 

[43], therefore we call them as parasitic layers. The parasitic 

layers involve a small number of learnable weights, which 

can be easily learned using the available data for video tamper 

detection. 

This study consists of following contributions: (i) For 

video tamper detection, an efficient and robust method has 

been introduced, (ii) for this method, a deep model has been 

proposed; it consists of three types of layers: motion resid- 

ual layer, CNN layers, and parasitic layers, (iii) an efficient 

training method has been introduced for parasitic layers, 

which is based on extreme learning theory and improves 

the overall performance in terms of accuracy and efficiency. 

The proposed method based on the deep model gives better 

accuracy (98.89%) and efficiency for the classification of 

authentic and tampered VCs on different datasets than the 



 

 
 

 

 

 

 
 

state-of-the-art methods. According to our knowledge, this 

type of efficient and robust method based on deep learning 

has been introduced first time for video tamper detection 

 
C. MOTIVATION AND GOALS 

When a forger tampers video by adding or removing any 

object, the traces/shapes of that object remain in the video, 

although it is post-processed to conceal the tampering traces. 

These shapes/patterns can be learned through deep networks 

from the huge amount of data, but it is a time-consuming task 

and difficult to label all the data. Furthermore, the learning 

of the huge number of weights at each layer is required, 

which need more time. Similarly, another limitation is that 

a large number of tampered videos are not available to learn 

all these shapes. Based on these limitations, transfer learning 

is explored. 

The objective of this study is to investigate the capability of 

deep CNN for classification of authentic and tampered videos 

and target to answer these questions: (a) Which model of deep 

learning should be employed? (b) Which part of the model 

should be used for feature extraction and representation of the 

tampered traces? (c) How many layers should be transferred 

in order to obtain best performance? (d) Which classifier is 

best to classify authentic and tampered videos? (e) How to 

modify the existing deep CNN model to make a new model 

for classification of authentic and tampered videos? 

 
D. ORGANIZATION OF STUDY 

The rest of the study is organized as follows. In section 2, 

the methodology is described in detail. Evaluation detail and 

datasets are elaborated in section 3. Extensive experiments 

detail and their analysis are presented in section 4 and 5. 

Finally, section 6 concludes this study with future work. 

 
II. PROPOSED METHOD 

In this section, a method based on deep learning is pre- 

sented for the classification of VCs as authentic or tampered. 

The method takes a VC as an input and gives the decision 

whether it is authentic or not. A video is segmented into non- 

overlapping VCs, and its authenticity is validated based on 

whether all VCs are authentic. If a video is tampered, then 

this approach not only detects tempering but also localizes 

the probable tempered frames. 

A video (V ) containing N frame is divided into non- 

a video is not exact multiple of 21, the last VC consists of 

less than 21 frames. In this case, the last VC is created by 

taking the last 21 frames of the video. In this way, the method 

authenticates each VC one by one to verify complete video. 

The method consists of a deep CNN model, which com- 

prises three types of layers: (i) motion residual (MR) layer, 

(ii) CNN layers which involve convolutional, pooling and 

fully connected layers, (iii) parasitic layers. The overall archi- 

tecture is shown in Fig. 3. The MR layer takes a VC of 

size W as input and calculates the motion residual for 

each of R, G and B channels, and concatenates them as a 

3- channel activation, which is passed to CNN layers. The MR 

highlights the tampering traces by aggregation of frames. The 

CNN layers compute the hierarchical representation of the 

VC. Finally, parasitic layers work as a classifier and predict 

whether the VC is authentic or tampered. The detail of each 

layer is elaborated in the following subsections. 

 
A. MOTION RESIDUAL (MR) LAYER 

The videos can be tampered by adding and/or deleting the 

objects with sophisticated tools, but to hide the tampering 

traces (lines, edges), different operations such as video in- 

painting, contrast adjustment, blurring, and video layer fusion 

are performed. In this way, some specific statistical properties 

of the tampered videos are altered. These alterations can help 

in tampering detection, if they are modelled well. One way to 

model these alterations is to use MR of the video sequences 

[23], which is calculated by MR layer. The visual description 

of MR layer is shown in Fig. 4. The calculation of motion 

residual is elaborated in algorithm 1. 

 

Algorithm 1 The Computation of Motion Residual (MR) 

Input: Non-overlapping video clip (VC) of size W 

Output: Motion residual of VC 

Procedure: 

1. Identify the central frame Fc of VC 

2. Apply aggregated function · on VC and compute 

aggregated frame AF 

3. Compute motion residual MR such that MR  = 

|Fc − AF | 
 

 

 

An aggregated operation is performed over a VC to get an 

aggregated frame (AF) which is defined as 

overlapping VCs, each consisting of W frames, where W = 
2m + 1 for some integer m. We tested W with m = 4, 6, 

8, 10, 12, 14. The W = 9 with m = 4 was selected as the 

AF (x, y) = ·[Fc−NB (x, y), . . . , Fc(x, y), . . . , Fc+NB (x, y)], 

(1) 

initial size of VCs for experiments because in order to create 

plausible tampering ‘‘at least’’ 10 frames are manipulated 
(because manipulation of fewer frames will not accomplish 

anything meaningful) [44]. Empirically, we found that W = 

21 with m = 10 results in better detection performance; it 
means that more than 10 frames are necessary for reliable 

detection; the frames in a VC in addition to tampered frames 

from the context and this contextual information lead to better 

detection performance. In case, the total number of frames of 

where Fc is the central frame, NB = m. The operator · is 

an aggregated function that processes the pixels in the same 
positions of all frames in the VC. 

The MR of VC is calculated as follows: 

MR(x, y) = |Fc(x, y) − AF (x, y)| , (2) 

where |.| denotes the absolute value. In this study, four aggre- 

gated functions ·Minimum, ·Maximum, ·Median, and ·Average are 



 

 

 

 

 

 
  

 

 
 

 
 

FIGURE 3. Architecture of the proposed method for the classification of authentic and tampered VC. 

 

FIGURE 4. Motion Residual (MR) layer of VC of size W = 7. Each frame has three channels R, G and B. MR is calculated for each channel and as 
such MR has three channels. 

 

examined. These functions are defined as: 

 

·Minimum(x, y) = Min (Fc−NB(x, y), . . . , Fc(x, y), . . . , 

Fc+NB(x, y)) , (3) 

·Maximum(x, y) = Max (Fc−NB(x, y), . . . , Fc(x, y), . . . , 

Fc+NB(x, y)) , (4) 

·Median(x, y) = Median (Fc−NB(x, y), . . . , Fc(x, y), . . . , 

Fc+NB(x, y)) , (5) 
w 

·Average(x, y) = Fi(x, y)  /w, (6) 

i=1 

 

where (x, y) is the position of a pixel in all frames of 

VC. Please note that according to equations (3) to (6) the 

AF (x, y) ∈ {0, . . . , 255} which yields MR, where MR(x, y) ∈ 

{0, . . . , 255} There are four scenarios for recording a video: 

• Scene and camera both are static 

• Scene is static but camera is moving 

• Scene is moving and camera is static 

• Scene and camera both are moving 

In the first scenario, a small change occurs in the frames of a 

VC due to acquisition noise. The distribution of this noise is 

symmetric in all the frames of VC [10], [23]. Therefore, MR 

is almost zero in case of authentic VC because Fc−NB(x, y) ∼= 

· · · ∼= Fc(x, y) =∼ · · · ∼= Fc+NB(x, y). However, in a tampered 

VC, the tampered regions in all the frames of the VC are not 

consistent and due to these inconsistent tampered regions, the 

noise patterns are not same in the frames of VC. Similarly, 

in other three scenarios the noise patterns of the forged VCs 

 
 



 

 
 

 

 

 

i i1 i2 is i 

[ ] 

 
 

are different from those of authentic VCs. As such, MR 

is helpful to highlight these changes which are introduced 

during the tampering process. With the increase/decrease of 

motion in a scene, though there is a variation in the patterns 

of MRs of tampered VCs, they are different from those of 

authentic VCs. In all The MR layer takes VC of any resolution 

and gives the output rescaled to 224 × 224 × 3. Then this 

activation of MR is fed forward to CNN layers for further 
processing. 

 
B. CNN LAYERS 

A CNN [43] is a type of deep learning model which has 

shown excellent performance on pattern recognition tasks 

such as hand-written digit classification, image classification 

and human action recognition [36], [40]. It is a hierarchical 

learning model with multiple hidden layers, which transforms 

the input volume to output categories. Its architecture con- 

sists of three main types of layers: convolutional layer, pool- 

ing layer, and fully-connected layer. One limitation of deep 

model is over-fitting when it is learned with small datasets. 

However, the over-fitting can be avoided by increasing the 

size of the training data, but it is a difficult and expensive task 

to arrange a large amount of annotated data. In this situation, 

transfer learning comes into play and solves this issue by 

using pre-trained model to generate a new architecture [45]. 

In this study, using pre-trained VGG-16 model, a method 

based on deep model, is proposed for the classification of 

authentic and tampered VCs. In the proposed method, the 

input layer and last two layers (FC8, softmax) of VGG- 

16 model are replaced. The input layer is replaced with MR 

layer which has been discussed earlier. The last two higher 

layers are replaced with parasitic layers which are discussed 

later in section parasitic layers. The intermediate layers of 

VGG-16 model, other than the first and the last two layers are 

freezed (see Table 1) and used as CNN layers in the proposed 

method. 

The CNN layers are trained on an ILSVR dataset [46] by 

using stochastic gradient descent (SGD) [47]. The detail of 

key parameters of these layers is shown in Table 1. In this 

table, four kind of components are described in terms of 

kernel dimension, number of kernels, stride and padding. The 

Conv, pooling and FC represents the convolution, pooling 

and fully connected layers respectively. Furthermore, each 

convolution layer has a rectified linear unit as the activation 

function. The deep and discriminant representation of the 

tampered traces is obtained from the fully connected layer 

FC7. Then the activation of FC7 layer is fed forward to 

parasitic layers. 

 

C. PARASITIC LAYERS 

Detection of video tampering is a two class problem (authen- 

tic or tampered). The last fully connected layers of VGG- 

16 learn the task specific knowledge and are trained using 

SGD algorithm, which needs a huge volume of data and a 

lot of time. As an attempt to address this issue, the FC8 and 

softmax layers of the VGG-16 are replaced with two new 

TABLE 1. The parameters detail of CNN layers. 

 

 

 
layers, which depend on the activation of FC7 layer and 

thus the name parasitic layers. These layers are learned using 

an extreme learning machine (ELM) [48], [49] algorithms, 

which improve the efficiency and accuracy of classification. 

As there are two classes in the problem of video tampering 

detection, therefore, FC9 contains only two neurons. The 

number L of neurons in FC8 depends on the learning choice 

such as learning algorithm 1 or learning algorithm 2. In the 

case of learning algorithm 1, the neurons of FC8 use ordinary 

activation functions such as sigmoid, hard-limit, sine func- 

tions and their number are fixed using cross validation. When 

the learning algorithm 2 is used, the neurons of FC8 use a 

kernel function such as RBF, linear, or polynomial kernel and 

their number are fixed by the number of training examples. 

The fully connected layer FC7 acts as an input layer for both 

options. These learning algorithms save the time and reduce 

the computational cost significantly because they learn the 

parameters of FC8 and FC9 by solving the closed form 

optimization problem. 

In the proposed method, the learnable layers are CNN 

layers and parasitic layers. The CNN layers are pre-trained 

using ImageNet dataset and the learnable part consists of only 

parasitic layers, which involve a small number of parameters 

and the available data is enough to learn these layers, so there 

is no problem of over-fitting. 

 
1) LEARNING ALGORITHM 1 

This learning algorithm is motivated by ELM [49]. In this 

algorithm, during the learning process, the weights and biases 

of FC8 layer are randomly assigned and weights of FC9 are 

computed by solving a closed form problem. Let the weights 

and bias of the ‘ith’ neuron of FC8 be denoted by the row vec- 

tor w8 = w8 w8 ... w8 and b8 as shown in Fig. 5. Also, 

let the output of the layer FC7 be denoted by s-dimensional 

vector X 7, then the output L-dimension vector Z of FC8 is 
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Hard − limit function : 

G(a, b, X ) = 
1, if a.X − b > 0 

0,  otherwise. 

 
 

(14) 

Sine function : 

G(a, b, X ) =sin(a.X + b). (15) 

 
Algorithm 2 Learning of Parasitic Layers Using Simple ELM 

 

Input: Activations of FC7 layer X 7, X 7, . . . , X 7, activation 
1 2 n 

 

 

 

 

FIGURE 5. The architecture of parasitic layers. 

function f , number L of hidden neurons in FC8 layer 

Output: Parameters of the parasitic layers 

Procedure: 

1. Assign random weights W 8 and biases b8 to the L 

hidden neurons of FC8 
2. Calculate the activations Z1, Z2, . . . , Zn of 

X 7, X 7, . . . , X 7  using  equation  (7)  and  form 

calculated as: 

Z = f (W8X 7 + b), where W8 and b is weight 

matrix and bias vector of FC8 such that : (7) 

1 2 n 

matrix Z = [Z1, Z2, . . . , Zn] 
3. Compute Z

t
, the Moore-Penrose generalized inverse 

of Z 4. Compute W9 using equation (12) 

W8 = 
[ 

(w8)T (w8)T ... (w8 )T 
]T 5. Return W8, b8, and W9 

and b =  b1 b2 ... bL T , (8) 

T and f are the transpose and the activation function (sig- 

moid, sine and hard-limit) respectively, which are defined 

by equations (13), (14) and (15). Let W9 be the weights of 

FC9 then the output of FC9 is a 2-dimension vector such 

that 
− 

= W9Z . If X 0, X 0, . . . , X 0 are the training examples, 

 
 

 
 

2) LEARNING ALGORITHM 2 

This learning algorithm is motivated by kernel ELM [48]. 

In this learning algorithm, the number L of neurons in 

FC8 layer is equal to the number n of training examples 
i.e., L = n. The weights and bias of the ‘ith’ neuron at FC8 are 

then the corresponding outputs of FC8 are Z1, Z2, . . . , Zn, 

which are combined into a L × n matrix Z such that Z = 
[Z , Z , . . . , Z ] . Therefore, the output 2×n matrix of FC9 is: 

assigned such that W 8 = X 7 and bi = 0 where X 7 is the 

output of the training example Xi through FC7. The output 
1 2 n  

− = W9Z (9) 

matrix Z of FC8 layer is calculated using a kernel function 

such as Radial Bases Function (RBF), linear and polynomial 

functions. If X is any input pattern, and X 7 is the output 

If y1, y2, . . . , yn  are the labels of training examples through FC7, then the corresponding output Z from FC8 is: 

X 0, X 0, . . . , X 0 then Y = [y1, y2, . . . , yn] is a 2 × n matrix of 

the original labels. We expect that the predicted labels must 
match with Y i.e.: 

7 7 

K (X 7, X 7) 
7  .  

− 

Y = Y 

From equation (9) and (10), we get, 

(10) 
Z (X ) = . (16) 

 .  
 

 

Y = W9Z (11) Let W9 be the weights of FC9 then the output of 

In equation (11), W9 is unknown and is calculated by solving 
∼ 

FC9 is a 2-dimension vector such that Y =  W9Z. If 
the equation (11) as follows: X 0, X 0, . . . , X 0 are the training examples and their activa- 

1 2 n 7 7 7 

W9 = YZ
t
, (12) 

where Z
t = ZT ( 1 + ZZT )−1 is the Moore-Penrose gener- 

alized inverse of Z and for stable solution a regularized term 

tions by FC7 layer are X
1 
, X

2 
, . . . , Xn then their activations 

by FC8 are Z1, Z2, . . . , Zn, which are arranged into n × n 

symmetric kernel matrix Z = [Z1, Z2, . . . , Zn] i.e.,: 
 
K (x7, x7) K (x7, x7) • • • K (x7, x7) 

 

rithm 2. The equations of the activation functions (sigmoid, 

hard-limit and sine) are as follows. 

Sigmoid function : 1 

K (x
1 
, x

1 
) K (x

2 
, x

1 
) • • • K (xn , x1 

) 

Z = 
• • • • • • 

. 
• • • • • • 

K (x7, x7) K (x7, x7) • • • K (x7, x7) 

 

G(a, b, X ) = 
 

 

1 + e−(a.X +b) 
, (13) 

1 n 2 n n n 

(17) 

n 

 
 

1/C is added. The learning algorithm 1 is outlined in Algo- 
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Then, the output matrix of FC9 is: A. DESCRIPTION OF DATASETS 

∼ 
9 

The proposed method is validated on six (6) different datasets. 

Y = W Z (18) 

If y1, y2, . . . , yn  are the labels of training examples 
X 0, X 0, . . . , X 0 then Y = [y1, y2, . . . , yn] is a 2×n dimension 

The videos of these datasets have different resolutions includ- 

ing 320 × 240, 720 × 480, 768 × 576 and 720 × 1280. The 

formats of the videos are AVI, MOV, MP4 and WMV. Some 
datasets were captured with static cameras, some with mov- 

1 2 n 

matrix of original labels. We expect that the predicted labels 

must match with Y i.e.,: 

∼ 

Y = Y (19) 

Equations (18) and (19) can be combined as: 

Y = W9Z (20) 

In equation (20), W9 is unknown and can be calculated by 

solving the equation (20) because Z is a symmetrical matrix 

such that: 

W9 = YZ−1 (21) 

For stable solution a regularized term 1/C is added in equation 

(21) as: 

W9 = Y( 
1 

+ Z−1) (22) 
c 

The learning algorithm 2 is presented in Algorithm 3. The 

equations of the kernel functions RBF, linear, and polynomial 

are as follows: 

ing cameras and some with both. The detail of these datasets 

is presented in Table 2. All the datasets containing tampered 

videos were created for research on video tamper detection 

and keeping in view this purpose, the videos were tampered 

to simulate the intentional video tampering scenarios. 

The dataset D1 was captured with three types of cameras 
i.e., Cannon, Fuji and Nikon and it contains 100 authentic 

videos having frame rate of 30fps and resolution 320 × 240. 

It has AVI and WMV formats. The length of the videos 

varies between 4 to 15 seconds. The D2 dataset contains 

a total of 20 videos, in which 10 videos are authentic and 

10 are forged. The frame rate is 30fps and length varies 

between 7 to 19 seconds. The dataset D3 has 14 authentic 

and 6 forged videos. The length varies from 3 to 17 seconds. 

The D4 dataset consists of 6 authentic and 121 forged videos. 

Five videos were captured with a static camera and one with 

moving camera. This dataset has frame rate of 30 and the 

length of the videos varies from 2 to 16 seconds. Each authen- 

tic video is forged with different geometric transformations 

(flipping, rotation, scaling and shearing) and post-processing 

operations (luminance, RGB, None). In this dataset, the 

forgery was done such that it could be visible and invisible 

with naked eyes. 

RBF Kernel : K (X, X t) = exp

 

− 
X − X t 2 

 

2σ 2 , (23) 
The D5 dataset comprises of 40 videos, in which 20 videos 

are authentic and 20 are forged. The frame rate of this dataset 

Linear Kernel : K (X, X t) = X.X t, (24) 

Polynomial Kernel : K (X, X t) = (X.X t + b)d , (25) 

is 29fps and the duration of videos is between 14 to 15 sec- 

onds. Static and moving cameras are involved to capture the 

videos. In this dataset the tampered videos are created with 

copy-move and splicing forgery. The dataset D6 was created 
  from the datasets D1, D2, D3 and D5 such that authentic 

Algorithm 3 Learning of Parasitic Layers With Kernel ELM 
 

 

Input: Activations of FC7 layer X 7, X 7, . . . , X 7, Kernel 
videos are taken from D1 and forged videos from datasets D2, 

D3 and D5. The D7 dataset consists of a total 150 authentic 

function 
1 2 n 

and 157 forged videos taken from the datasets D1 to D5. 

Output: Parameters of the parasitic learning layer 

Procedure: 

1. Assign the value of neurons such that W 8 = X 7 and 
b8 = 0 where i = 1, 2, . . . , n 

Authentic videos are collected from D1, D2, D3, D4 and 

D5 whereas forged videos are taken from D2, D3, D4 and D5. 

i
8 8 8 8 8 8 8 8 B. EVALUATION PROTOCOL 

w = [w
1
, w

2
, . . . , wn], b = [b

1
, b

2
, . . . , bn] 

2. Calculate the activations Z1, Z2, . . . , Zn of 
The generalization and robustness of the method on different 
datasets Di where i = 2, 3, 4, 5, 6, 7 are evaluated using 

X 7, X 7, . . . , X 7 using  equation  (16)  and  form 
1 2 n 

matrix Z = [Z1, Z2, . . . , Zn] 
3. Calculate the output weight W9 

4. Return W8, b8 = 0 and W9 

 
 

III. EVALUATION FRAMEWORK 

 
using equation (22) 

10-fold cross validation i.e., VCs from videos in each dataset 

are partitioned into 10 folds. Each fold is held out in turn 

for testing and remaining folds are used for training. The 

results are reported as the average and standard deviation of 

10-folds. It is employed to ensure that the proposed method 

is not suffering from over-fitting. 

Performance of our proposed method is evaluated using 

This section first gives an overview of the datasets used for 

evaluation and then presents the detail of the evaluation pro- 

tocol that are used for the validation of the proposed method. 

different evaluation measures such that true positive rate 

(TPR), true negative rate (TNR) and accuracy (AC). The 

t-SNE method [53] is introduced to give the discriminant 



 

 

 

 

 

 
 

TABLE 2. Detail of all datasets. 
 

 

 

 

 
 

 
 

 

analysis of features used in proposed method. Assuming that 

the videos which are authentic are called negative cases and 

the video sequences have some tampered object(s) known as 

positive cases. 

There are four possible categories to judge the binary 

(positive or negative) classification problem. (1) True positive 

(TP): positive samples that are classified as positive; (2) 

true negative (TN): negative samples that are classified as 

negative; (3) false positive (FP): negative samples that are 

classified as positive and, (4) false negative (FN): positive 

samples that are classified as negative. These metrics are 

defined as: 

AC = 
TP + TN 

, (26) 
TP + TN + FP + FN 

TPR = 
TP 

, (27) 
TP + FN 

TNR = 
TN 

, (28) 

TN + FP 

IV. EXPERIMENTAL SETUP, RESULTS, COMPARISONS 

AND DISCUSSION 

Several VCs are used to demonstrate the effectiveness and 

robustness of the proposed method. The experiments are per- 

formed with MATLAB 2016b. The hardware specification is 

as follows. CPU: Intel Xeon 2.67 GHz, Memory size: 16 GB, 

OS: Microsoft Windows 8.0. 

 
A. HYPER PARAMETERS TUNING 

Different hyper parameters like aggregative functions, 

VC sizes, classifiers, number of CNN layers, activations, and 

kernel functions are required to be tuned in the proposed 

method which affects the accuracy. The effect of these param- 

eters is elaborated below in detail. 

 
1) EFFECTIVENESS OF DIFFERENT AGGREGATIVE 

FUNCTIONS WITH DIFFERENT VIDEO CLIP (VC) SIZES W ON 

ACCURACY 

The influence of VC size of W frames with different aggre- 

gated functions on accuracy is shown in Fig. 6. The activation 

of FC7 layer of CNN layers are used to select the best clip 

size W with different aggregated functions. The best accuracy 
is achieved 98.89% by ·Median on VC of size W = 21, 

NB = 10, and m = 10. The accuracy using ·Median is 

increasing steadily with the increase of clip size W . After 
clip size of W = 21, the accuracy starts decreasing, however, 

all other aggregated functions like maximum, minimum and 

average have lower accuracy as compared to the median 

function. Aggregated function ·Median and W = 21 are used 

for all other experiments. 

 
2) EFFECT OF DIFFERENT NUMBER OF LAYERS OF 

VGG-16 ON ACCURACY WITH DIFFERENT CLASSIFIERS 

In this research, one of our objective was to find out how 

many layers of the VGG-16 model are required to freeze for 

transfer learning to achieve best accuracy for classification 

against authentic and tampered VCs. Activations of different 

layers of VGG-16 model are used with different classifiers. 

The best result is achieved on activation of FC7 layer with 

our proposed parasitic layers as shown in Fig. 7. The accu- 

racy is decreased for all other classifiers, as the layers are 

increased. Based on experiments, the activation of FC7 layer 

is selected as input to proposed parasitic layers. Furthermore, 

 
 

 
  

 
 

 

 
 

 
 

 
 

 
 

 
  
  

 

 
  

 

 
 

 
 

 
 

 
 



 

 
 

 

 

 

 

 
 

 
 

FIGURE 6. Accuracy (%) comparison of different aggregative functions with different video clips of size W frames. 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
FIGURE 7. Effect of different layers of VGG-16 on accuracy with different classifiers. 

 

it is evident from experiments that the best results are 

obtained with proposed parasitic layers using the RBF kernel 

as compared to other classifiers. 

 
 

3) EFFECT OF DIFFERENT ACTIVATION AND KERNEL 

FUNCTIONS IN PARASITIC LAYERS 

The accuracy depends on the number of hidden layer neurons 

and the way through which weights are calculated of these 

neurons. Two algorithms are applied as discussed earlier 

in the parasitic layers section. In the learning algorithm 1, 

the numbers of hidden layer neurons are selected manually, 

and weights are given randomly. Different activation func- 

tions are used to calculate the weights of output matrix Z. The 

experiments are started with the number of neurons 200 and 

are increased gradually with the step size 100 for all the 

activation functions to obtain the accuracy on dataset D7. For 

detail see Fig. 8 and Table 3. 

It is evident from Fig. 8 that the accuracy is gradually 

increasing with an increasing number of neurons. The highest 

accuracy 90.33% is achieved using sigmoid function when 

the number of neurons are 700. As the number of neurons 

increased from 700 to 800, there is no change in the accuracy 

as shown in Fig. 8. Therefore, stopped further to tweak the 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



 

 

 

 

 

 
 

TABLE 3. Time efficiency and accuracy in percentage with different activation functions on dataset D7. 

 

 

 

 
 

 
 

 
 

         

 

 
 

   
 

   
 

   
 

 
 

         
 

 
 

   
 

   
 

   
 

 
 

   
 

   
 

   

   
 

   
 

   

    
 

   
 

   
 

 
 

   
 

   
 

   

 
TABLE 4. Time efficiency and accuracy in percentage with different kernels on dataset D7. 

 

 

 

 
 

 

 
 

 

   

 

 
 

 

 
 

 

  

 

 

 

 

 
 

    

 

 
 

 
 

 
 

 

 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

values of neurons. Similarly, in the learning algorithm 2, 

different kernels (polynomial, linear and RBF) are used in 

the parasitic layers and achieved accuracies empirically on 

dataset D7, which are presented in Table 4. For the polyno- 

mial kernel, three parameters (C, b, and d ) needs to be tuned 

to obtain accuracy. The best accuracy 93.87% is achieved 



 

 
 

 

 

 

 

 
 

 

FIGURE 8. Effect of different number of hidden neurons. 

 

 

 

FIGURE 9. Effect of parameter value b in polynomial kernel on accuracy. (a) When C = 2, d = 2. (b) When C = 3, 
d = 2. (c) When C = 4, d = 2. 

 

on the polynomial kernel with the parameter values C = 3, 

b = 0.3, and d = 3. The values of parameters (C, b, and d ) 
increased gradually until accuracy stopped increasing further. 

The parameter b is started tweaking from 0.1 with the incre- 
ment of step size 0.1. A graph is shown in Fig. 9 for different 

values of b (0.1 to 0.5) at (C = 2, 3, 4) and d = 2. The 

accuracy started decreasing after b = 0.4, therefore, stopped 
tweaking further. A similar, process is also completed with 

the value of d and C. The highest accuracy 90.16% is achieved 

for the linear kernel at C = 3. For further improvement in 

accuracy, the RBF kernel is investigated and to get results the 
values of parameters (C and σ ) are tuned empirically. The 

best accuracy 98.89% is obtained with C = 3, σ = 0.2 

on this kernel because this kernel has good generalization 

capabilities and tolerance to noise. 

The time efficiency is also calculated for both algorithms. 

The results with time calculation are shown in Table 3 and 4. 

The time efficiency is improved which is also endorsed during 

comparison with methods [8] and [23] (see Table 6). The 

reason to improve time efficiency is elimination of gradi- 

ent descent algorithm to calculate weights of the neurons 

in FC8 layer. Moreover, the method learns the parameters 

of FC8 and FC9 by solving the closed form optimization 

problem. 

 
 

B. EFFECTIVENESS ON DIFFERENT DATASET 

The proposed method is verified on different tampered video 

datasets. The achieved accuracy is 96.34%, 97.45%, 95.37%, 

96.75%, 93.68% and 98.89% on D2, D3, D4, D5, D6, and 

 
 

 
  

 
 

 



 

 

 

 

 

 

 
 

   
 

   
 

FIGURE 10. (a) Visualization of features distribution extracted through FC7 of proposed method. (b) Visualization of features distribution of [23]. 

 

 
TABLE 5. Performance of the proposed method on various datasets and 
their combination. 

 

 

 

 

 

 

 

 
D7 datasets respectively as shown in Table 5. The best accu- 

racy 98.89% is accomplished on D7, which is a combination 

of all datasets. The lowest and highest accuracies are 93.68% 

and 98.89% on dataset D6 and D7 respectively. The accura- 

cies on dataset D6 is the lowest because in this dataset the 

authentic and forged videos were not the same. Furthermore, 

the proposed method is independent of frame rate and video 

resolution. Each video is divided into non-overlapping VCs 

of fixed size W = 21 frames which makes method indepen- 

dent of frame rate, and then checks the authenticity of each 

VC instead of verification of video. Similarly, the method 
takes VC of any resolution and MR layer gives the rescaled 

output of 224 × 224 × 3, due to this reason the method works 

on all resolution. 

 
C. COMPARISON WITH THE STATE-OF-THE-ART 

For validation the results are compared with state-of-the- 

art methods (see Table 6 and Table 7). To the best of our 

knowledge, only a few methods are available in the literature 

for detection of object-based tampered video. The proposed 

method is compared with two state-of-the-art techniques 

dealing with object-based tampering in videos developed by 

Richao et al. [8] and Chen et al. [23]. The results achieved 

with proposed method and state-of-the-art techniques on 

dataset D7 are shown in Table 6. 

The comparison reveals that the proposed method has bet- 

ter accuracy on D7 dataset, which involves different types 

 
of geometric transformations and post processing operations. 

The method outperforms than the both methods and works 

well against different types of geometric transformations and 

post-processing operations. The success of any classification 

system depends on how accurately? it models the struc- 

tural changes occurring in video frames due to tampering. 

During tampering lines, edges, and corners are introduced, 

which are considered artifacts of tampering. Feature extrac- 

tion using modified CNN represented these artifacts more 

precisely and the classification results are improved. For a 

fair comparison, the method requires to be compared on same 

dataset. Since, the videos used in [8] and [23] are not publicly 

available, and the proposed method cannot be tested on these 

videos. The methods in [8] and [23] were implemented with 

same setting of parameters and were tested on dataset D7. 

The comparison is shown in Table 6. The performance of the 

proposed method is significant as compared to methods in [8] 

and [23] because hierarchical features extracted using CNN 

layers are more discriminative than hand-crafted features. 

The performance of the proposed method is also invariant 

to different geometric transformations such as scaling, rota- 

tion, shearing and mirroring as compared to methods in [1] 

and [26]. The accuracy of the proposed method is better than 

the state-of-the-art methods which are trained and tested on 

D2 dataset, as shown in Table 7. 

 
V. DISCRIMINATIVE ANALYSIS OF FEATURES 

The extracted features from FC7 layer of the proposed 

method are also evaluated to study the discriminating nature 

of the features. The method of t-SNE [53] is introduced 

as the evaluation criteria. This method is commonly used 

for evaluating the discriminating properties of features [54]. 

The visualization of features distribution extracted from 

FC7 layer of the proposed method and method in [23] is 

shown in Fig. 10. Two coloured points represent instances of 

two types. Red points represent the authentic instances and 

the blue points represent tampered instances. It is obvious to 

see from Fig. 10a that the proposed method gives discrimi- 

nating high level features which contribute to provide good 

accuracy and better generalization as compared to [23]. 

 
 

 
 

 
  

 
 

 
 

  
 

 
 

 
  

 
 

 
 

 
 

  
 

 
 

 
 

 
 



 

 
 

 

 

 

 
 

TABLE 6. Comparison of the proposed method and the state-of-the-art methods on dataset D7. 

 

 

 

 

TABLE 7. Comparison of the proposed method in terms of accuracy with state-of-the-art methods on dataset D2. 

 

 

 

 

 

 

 

 

VI. CONCLUSION AND FUTURE WORK 

Detection of altered videos is a challenging task. The current 

cutting-edge techniques face limitations ranging from eval- 

uation of the method on a small number of videos, to use 

of single video formats and a fixed resolution. In this paper, 

a method based on deep model is proposed for classification 

of authentic and tampered video clips (VCs) which consists 

of three types of layers i.e., motion residual, CNN, and par- 

asitic layers. Residual layer aggregates the information from 

consecutive frames of VC, CNN layers extract discriminating 

features from the aggregated frame of a VC and parasitic 

layers employed these features to classify a VC as authen- 

tic or tampered. The parasitic layers are computationally 

efficient and learn the structure of authentic and tampered 

VCs efficiently. The proposed method gives better accuracy 

98.89% and also computationally efficient. The method can 

detect even the most plausibly created forgery. Moreover, 

the proposed method may motivate the research community 

to think another way to enhance the performance of convo- 

lution neural networks in the domain of tampering detection. 

Our future work will be focused on the localization of tam- 

pered objects in the video clips. 
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