
Cuckoo Search Algorithm with Lévy Flights for Surface
Reconstruction from Point Clouds with Applications to Reverse

Engineering

ABSTRACT
Surface reconstruction is a classical task in industrial engineering 
and manufacturing, particularly in reverse engineering, where the 
goal is to obtain a digital model from a physical object. For that 
purpose, the real object is typically scanned and the resulting point 
cloud is then fitted through mathematical surfaces via numerical op-
timization. The choice of the approximating functions is crucial for 
the accuracy of the process. Unfortunately, real-world objects often 
require complex nonlinear approximating functions, which are not 
well suited for standard numerical optimization methods. In this 
paper, we overcome this limitation by using a cuckoo search algo-
rithm with Lévy flights, a swarm intelligence technique envisioned 
for global optimization. The method is applied to three illustrative 
examples of point clouds fitted by using a combination of expo-
nential, polynomial and logarithmic functions. The experimental 
results show that the method performs well in recovering the shape 
of the point clouds accurately. We conclude that the method is 
promising towards its application to manufactured workpieces in 
real industrial settings.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Shape
modeling; Parametric curve and surface models;Modeling
and simulation.

KEYWORDS
Artificial intelligence, manufacturing systems, nonlinear optimiza-
tion, reverse engineering, surface reconstruction, point clouds, 
cuckoo search algorithm, Lévy flights

1 INTRODUCTION
1.1 Reverse engineering
The classical pipeline in current manufacturing industry is to pro-
ceed from digital designs to the manufacturing of physical prod-
ucts. The process begins with the initial design of the product, 
which is typically performed by computer, taking advantage of 
sophisticated computer programs for CAD/CAM (computer-aided 
design/manufacturing). The computer design is visualized using 
powerful graphical libraries and the mathematical description of 
the object is used for the analysis of both aesthetical and functional 
requirements that, in turn, will enforce new computer designs. 
The repetition of this process leads to a closed loop manufactur-
ing cycle, involving different steps such as design (CAD models), 
measurement, quality assessment and monitoring, problem solv-
ing, tolerance analysis and simulation, and others. Once all design 
and engineering requirements are fully met, the computational 
model is validated and the digital files are finally used for final 
manufacturing.

There is, however, a second potential approach called reverse 
engineering, which proceeds in the opposite way [29]. Instead of 
digital models, the input in reverse engineering is the actual physi-
cal object, and the goal is to obtain a digital representation of the 
object in terms of mathematical curves and surfaces. This digital

95

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3596947.3596970&domain=pdf&date_stamp=2023-07-27


model is expected to replicate the original object accurately, where 
the prescribed accuracy will depend on the industrial domain.

There are various reasons to apply reverse engineering in indus-
try. One of the main reasons is to gain knowledge about the way 
a product works, or how a given workpiece will behave under dif-
ferent structural forces and other conditions. Reverse engineering 
facilitates this kind of structural analysis in a safe and controllable 
environment and in a more economical way via computer sim-
ulation. In other cases, reverse engineering is used to repurpose 
obsolete objects for which a digital model is no longer available. 
This is a typical situation for complex products created decades ago, 
which can be comprised of many complex workpieces that are out 
of production and, hence, become irreplaceable. In other cases, the 
digital model is used to analyze the quality of shape using shape 
interrogation techniques [28] and other methods. Another reason 
comes from intellectual property infringement assessment, where 
the digital model is used to know how a complex manufactured 
good has been obtained, thus helping to determine whether it in-
fringes any intellectual or industrial property right. Finally, reverse 
engineering is widely used now to modify the original shape of the 
manufactured workpiece for mass customization, a very popular 
trend in current product design strategies.

1.2 Surface reconstruction
Surface reconstruction is a classical process in industrial engineering 
and manufacturing, particularly in reverse engineering. The usual 
pipeline in reverse engineering begins with the manufactured good, 
which is digitized in some way (typically through 3D scanning, but 
other methods can also be used). The usual output of this step is a 
collection of point data called point cloud. This point cloud is then 
fitted through mathematical surfaces using some approximating 
functions [33]. Generally, this process is performed by minimizing 
the distance between the digital model and the digitized data points. 
This leads to a minimization problem, usually addressed through 
least-squares-based numerical procedures (see Sect. 2 for further 
details).

The choice of the approximating functions plays a crucial role 
for the accuracy of the process. This is an important observation, 
since many real-world objects require complex nonlinear approxi-
mating functions, which are not well suited for standard numerical 
optimization methods. In this regard, novel approaches have been 
introduced during the last decades to tackle this issue. Among them, 
those based on artificial intelligence are receiving increasing atten-
tion during the last few years. This is also the approach followed 
by the authors in this work.

1.3 Aims and structure of this paper
In this paper, we address the surface reconstruction problem from 
point clouds. In our approach, we assume that the mathematical 
surfaces can be accurately approximated by fitting functions that 
are a combination of exponential, polynomial, and logarithmic 
functions. These basis functions are continuous and nonlinear, and 
so is the resulting combined fitting function. As a result, we are 
confronted with a difficult continuous and nonlinear optimization 
problem unsolvable with the traditional numerical techniques. This 
limitation is solved here through the cuckoo search algorithm with

Lévy flights, a swarm intelligence technique envisioned for global
optimization. The method will be applied to three illustrative ex-
amples of point clouds with successful results. The novelty of this
work lies on the fact that, to the best of our knowledge, no previous
artificial intelligence-based method has addressed this problem in
the context of reverse engineering.

The structure of this paper is as follows: Sect. 2 summarizes
the previous work in the field. Sect. 3 describes the optimization
problem addressed in this work. Our method to solve it is described
in detail in Sect. 4. The performance of the method is illustrated
through three illustrative examples, which are discussed in Sect.
5. The paper closes in Sect. 6 with the main conclusions and some
ideas for future work in the field.

2 PREVIOUS WORK
The topic of surface reconstruction from point clouds has been the
subject of intensive research for decades. Early computational meth-
ods were introduced the 60s and 70s, mostly based on numerical
procedures [7, 30, 31]. Subsequent advances during the 80s and 90s
applied more sophisticated techniques, although they failed to pro-
vided general solutions [3, 6]. From a mathematical standpoint, this
issue can be formulated as a least-squares optimization problem
[23, 25, 28]. However, classical mathematical optimization tech-
niques had little success in solving it beyond rather simple cases,
so the scientific community focused on alternative approaches,
such as error bounds [26], dominant points [27] or curvature-based
squared distance minimization [34]. These methods provide ac-
ceptable results but they need to meet strong conditions such as
high differentiability and noiseless data that are not so common in
industrial settings.

More recently, methods based on artificial intelligence and soft
computing are receiving increasing attention. Some approaches are
based on neural networks [14], self-organizing maps [15], or the
hybridization of neural networks with partial differential equations
[2]. These neural approaches have been extended to functional
networks in [16, 24] and hybridized with genetic algorithms [8].
Other approaches are based on support vector machines [22] and
estimation of distribution algorithms [40]. Other techniques include
genetic algorithms [10, 38, 39], particle swarm optimization [9,
11], artificial immune systems [13, 19], bat algorithm [20], cuckoo
search algorithm [21] and hybrid techniques [12, 17, 18, 32]. It
is worthwhile to mention that none of the previous approaches
addressed the problem discussed in this paper.

3 THE OPTIMIZATION PROBLEM
As discussed above, in this paper we address a surface reconstruc-
tion from point clouds. In this case, the input of the optimization
problem consists of a collection of 𝑅 three-dimensional data points
{(𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 )}𝑟=1,...,𝑅 . For simplicity, we restrict to the case when the
point cloud corresponds to a height map. The goal is to obtain an
accurate mathematical representation of a explicit surface 𝑓 (𝑥,𝑦)
approximating the point cloud accurately. This condition can be
formulated as the minimization problem:

𝑚𝑖𝑛

{
𝑅∑︁
𝑟=1

[
(𝑥𝑟 − 𝑥𝑟 )2 + (𝑦𝑟 − 𝑦𝑟 )2 + (𝑧𝑟 − 𝑓 (𝑥𝑟 , 𝑦𝑟 ))2

]}
(1)



with (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) and (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ) denoting the original and recon-
structed data points, respectively, where 𝑥𝑟 and 𝑦𝑟 can be obtained
by projection of the point cloud on a base surface 𝐵(𝑥,𝑦) deter-
mined by principal component analysis or other techniques. In this
work, it is assumed that 𝑓 (𝑥,𝑦) is a combination of basis functions
from the exponential, polynomial, and logarithmic families of func-
tions. A convenient way to produce explicit surfaces under these
conditions is to consider bivariate distributions whose conditionals
belong to such families of basis functions [4]. Two feasible models
in this regard are the Normal-Gamma and the Gamma-Gamma
distribution functions. In the first case, the approximating function
is given by:

𝑓 (𝑥,𝑦) = 𝑒𝐹+𝐴𝑦−𝐶𝑦
2+(𝐺+𝐵𝑦−𝐷𝑦2 )𝑥+(𝐻+𝐽 𝑦−𝐾𝑦2 )𝑙𝑜𝑔 (𝑥 ) (2)

which is a model depending on 9 parameters. However, these param-
eters are not fully free, but have to hold some constraints derived
from the non-negativity and integrability properties, leading to the
following constraints (see [1] for details):

𝐶 > 𝐾

(
1 − log

(
−𝐾
𝐷

))
; 𝐷 > 0

𝐺 <
−𝐵2
4𝐷

; 𝐻 >
−𝐽 2

4𝐾 − 1
; 𝐾 < 0

(3)

In the second case, the approximating function is given by:

𝑓 (𝑥,𝑦) = 𝑒𝐶0+𝑥𝐶2+𝑦𝐶6+𝑥𝑦𝐶8𝑥𝐶1+𝑦𝐶7𝑦𝐶3+𝑥𝐶5+𝐶4 log(𝑥 ) (4)

which depends on 9 parameters. Once again, the non-negati-vity
and integrability of the marginal conditionals impose several con-
straints, leading to two feasible models [5]. The first model is given
by the constraints:

𝐶1 > −1,𝐶2 < 0,𝐶3 ≥ −1,𝐶4 = 𝐶5 = 𝐶7 = 𝐶8 = 0,𝐶6 < 0 (5)

and the second model is given by:

𝐶1 > −1,𝐶2 < 0,𝐶3 ≥ −1,𝐶4 = 𝐶5 = 𝐶7 = 0,𝐶6 < 0,𝐶8 < 0 (6)

Unfortunately, the resulting minimization problem from Eqs.
(1)-(2) with the constraints in Eq. (3) or from Eqs. (1)-(4) with the
constraints in either (5) or (6), is very difficult to solve, as it becomes
a constrained, multivariate, nonlinear, multimodal continuous op-
timization problem. As a consequence, classical gradient-based
mathematical techniques are not well suited to address it. In this pa-
per, we apply a powerful metaheuristic algorithm called the cuckoo
search algorithm with Lévy flights to solve this problem. It is ex-
plained in detail in next section.

4 THE PROPOSED METHOD
4.1 The cuckoo search algorithm
As discussed above, the minimization problem described in Sect. 3
becomes unsolvable for traditional mathematical techniques. As in-
dicated in Sect. 2, artificial intelligence-based methods have proved
to be good alternatives in many cases. In this paper, we consider a
powerful metaheuristic technique called cuckoo search algorithm
(CSA), introduced in 2009 by Xin-She Yang and Suash Deb to solve
continuous optimization problems [36, 37]. The cuckoo search al-
gorithm is inspired by a peculiar behavior of some cuckoo species
called obligate interspecific brood-parasitism, in which such cuckoo

Table 1: Original Cuckoo Search Algorithm with Lévy flights
proposed by Yang and Deb in [36, 37].

Algorithm: Cuckoo Search via Lévy Flights

begin
Objective function 𝑓 (x), x = (𝑥1, . . . , 𝑥𝑑 )𝑇
Generate initial population of 𝑁 host nests x𝑖
while (𝑡 < 𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) or (stop criterion)
Get a cuckoo (say, 𝑖) randomly by Lévy flights
Evaluate its fitness 𝐹𝑖
Choose a nest among 𝑁 (say, 𝑗 ) randomly
if (𝐹𝑖 > 𝐹 𝑗 )

Replace 𝑗 by the new solution
end
A fraction (𝑝𝑎) of worse nests are abandoned and

new ones are built via Lévy flights
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Postprocess results and visualization

end

species lay their eggs in the nests of host birds of other species.
This is a natural yet sophisticated and striking strategy to escape
from the parental investment in raising their offspring, while also
minimizing the risk of egg loss to other species. Of course, this
behavior plays an inspirational role exclusively, in the form of some
idealized rules as the basis for a computational optimization model.
In other words, the method is not a model of the natural behavior
of the cuckoos, but a nature-inspired metaphor for a computational
procedure, so the method must be understood in this way.

Putting the nature-based metaphor aside, the computational
approach can be summarized as follows. The method starts with an
initial population of 𝑛 host nests and runs in an iterative fashion.
In the original proposal, the initial values of the 𝑘th component of
the 𝑗th nest are determined by the expression 𝑥𝑘

𝑗
(0) = `.(𝑢𝑝𝑘

𝑗
−

𝑙𝑜𝑤𝑘
𝑗
)+𝑙𝑜𝑤𝑘

𝑗
, where𝑢𝑝𝑘

𝑗
and 𝑙𝑜𝑤𝑘

𝑗
are two variables to represent the

upper and lower bounds of that 𝑘th component, respectively, and
` represents a uniform random variable on the open interval (0, 1).
This choice ensures that the initial values of the variables are within
the search space domain. Of course, these boundary conditions
should also be controlled during execution at each iteration step.

For each iteration 𝑡 , a cuckoo egg, say 𝑖 , is selected randomly and
new solutions x𝑡+1

𝑖
are generated. In their original paper, Yang and

Deb discussed that the random search performed for the exploration
stage of the algorithm can be executed more efficiently by using
Lévy flights rather than with a simple random walk. The Lévy
flights are a type of random walk in which the steps are defined in
terms of the step-lengths. Such step-lenghts should follow a certain
probability distribution in which the directions of the steps must
be isotropic and random. In this case, the general equation for the



Figure 1: Original point cloud of Example I.

Lévy flight is given by:

x𝑡+1𝑖 = x𝑡𝑖 + 𝛼 ⊕ 𝑙𝑒𝑣𝑦 (_) (7)

where the superscript 𝑡 is used to indicate the current generation,
the symbol ⊕ is used to indicate the entry-wise multiplication, and
𝛼 > 0 indicates the step size. This step size determines how far a
particle can move by random walk for a fixed number of iterations,
and is therefore expected to be related to the scale of the particular
problem under analysis.

The Lévy flights in Eq. (7) are, by construction, Markov processes
with a transition probability modulated by the Lévy distribution as:

𝑙𝑒𝑣𝑦 (_) ∼ 𝑔−_, (1 < _ ≤ 3) (8)

which has an infinite variance with an infinite mean. This means
that the steps form a random walk process with a power-law step-
length distribution with a heavy tail. From the computational stand-
point, the generation of random numbers with Lévy flights consists
of twomain steps: firstly, a random direction according to a uniform
distribution is chosen; then, the sequence of steps following the
chosen Lévy distribution is generated (see [35] for details).

As the next step, the cuckoo search algorithm evaluates the fit-
ness of the new solution and compares its value with the value of
the current one. In case that the new solution yields a better fitness
value, this new solution replaces the current one so that further
improvement for the method is attained. Also, after evaluation of
the fitness, a fraction of the worse nests (according to the fitness)
are skipped and replaced by new solutions so as to increase the
exploration of the search space looking for more promising solu-
tions. The rate of replacement is determined stochastically through
a parameter of the model called the probability value 𝑝𝑎 , which
should be properly tuned for better performance. Then, all current

Figure 2: Example I: (top) Reconstructed surface; (bottom) re-
constructed surface and data points.

solutions are ranked at each iteration step according to their fitness
and the best solution reached so far is stored as the vector x𝑏𝑒𝑠𝑡 .
This procedure is repeated iteratively for a maximum number of
iterations, given as a parameter of the algorithm. The best solution
at last iteration is chosen as the final solution of the optimization
problem.

The best reconstructed surface is displayed in Fig. 2(top), and Fig.
2(bottom) shows the superposition of the fitting surface and the



Figure 3: Original point cloud of Example II.

original point cloud for better visualization. From those figures, we
can confirm visually the good numerical accuracy of the method,
and that the fitting surface replicates the shape of the point cloud
with satisfactory visual fidelity.

4.2 Population representation
To apply the cuckoo search algorithm to the optimization prob-
lem described in Sect. 3, it is required to have an adequate rep-
resentation for the individuals of the population. In this work,
we consider a population of 𝑁𝑝 individuals x𝑖 given by a vector
of 2𝑅 + 𝐿 components corresponding to the parameterization of
the data points, (𝑥𝑟 , 𝑦𝑟 ), with 𝑟 = 1, . . . , 𝑅 and the problem con-
straints. Without loss of generality, each parameter can be as-
sumed to take values on the unit interval [0, 1]. In other words,
x𝑖 = (𝑥1𝑖 , . . . , 𝑥𝑅𝑖 , 𝑦1𝑖 , . . . , 𝑦𝑅𝑖 ,𝐶1, . . . ,𝐶𝐿), where𝐶 𝑗 represents the
𝑗-th constraint of the optimization problem.

4.3 Parameter Tuning
An important issue of the metaheuristic techniques is that their
performance is typically affected by the choice of suitable values for
their parameters. In this regard, a critical advantage of this method
is its simplicity: the cuckoo search algorithm requires only two
parameters, many fewer than any other metaheuristic approach, so
the parameter tuning becomes a very easy task. In particular, the
cuckoo search requires only two parameters: the population size
𝑁𝑝 , and the probability 𝑝𝑎 . In this paper, we consider a population
of 𝑁𝑝 = 100 host nests, representing the number of candidate
solutions for the method. Regarding the parameter 𝑝𝑎 , our choice is
completely empirical: we carried out some simulations for different
values of this parameter, and found that the values around 𝑝𝑎 = 0.2
reduce the number of iterations required for convergence, so this is
the value taken in this paper. However, we noticed that the method

Figure 4: Example II: (top) Reconstructed surface; (bottom)
reconstructed surface and data points.

is not strongly sensitive to variations of the 𝑝𝑎 for the problem in
this paper.

4.4 Implementation issues
The computations in this paper have been carried out on a PC desk-
top with a processor Intel Core i9 running at 3.7 GHz and with 64
GB of RAM. The source code has been implemented by the authors
in the programming language of the scientific program Mathemat-
ica version 12. About the computational times, our method is quite
fast. Each execution of the method takes only a few seconds of CPU
time, including rendering.



I

5 EXPERIMENTAL RESULTS
The method described in the previous section has been applied 
to several instances of point clouds. For limitations of space, this 
section restricts the discussion to three illustrative examples, fitted 
according to the model in Eq. (2) for Example I, and the model in 
Eq. (4) for Example II and Example III. They are discussed in the 
following paragraphs.

5.1 Example I
This example consists of a cloud of 𝑅 = 34, 863 three-dimensional 
data points displayed in Fig. 1. The data points do follow a uniform 
parameterization and are affected by white noise of low intensity 
(SNR=12). The point cloud is fitted according to Eq. (2) with the 
constraints in Eq. (3). Therefore, the resulting optimization problem 
consists of minimizing the functional:

Ξ =

𝑅∑︁
𝑟=1

[
(𝑥𝑟 − 𝑥𝑟 )2 + (𝑦𝑟 − 𝑦𝑟 )2 + (𝑧𝑟 − 𝑓 (𝑥𝑟 , 𝑦𝑟 ))2

]
for

𝑓 (𝑥𝑟 , 𝑦𝑟 ) = 𝑒𝐹+𝐴𝑦𝑟 −𝐶𝑦𝑟
2+(𝐺+𝐵𝑦𝑟 −𝐷𝑦𝑟 2 )𝑥𝑟+(𝐻+𝐽 𝑦𝑟 −𝐾𝑦𝑟 2 )𝑙𝑜𝑔 (𝑥𝑟 )

Applying our method to the minimization of the functional Ξ with
the constraints in Eq. (3) leads to the values: 𝐴 = 3.0168;𝐵 =

1.9431;𝐶 = 1.0028;𝐷 = 2.9857;𝐾 = −2.0193; 𝐹 = 3.9938;𝐺 =

−0.9819;𝐻 = 2.0062; 𝐼 = 1.9896. For these values, the mean squared

error (MSE), denoted in this paper as Δ and defined as Δ =
Ξ

𝑅
,

becomes: Δ = 0.028816, which shows that the method is very
accurate in recovering the underlying mathematical structure of
the data.

5.2 Example II
The second example consists of a cloud of 𝑅 = 23, 714 three-
dimensional data points shown in Fig. 3. The data points are affected
by the same conditions as the previous example, and are is fitted
according to Eq. (4) with the constraints in Eq. (5). Therefore, the
resulting optimization problem consists of minimizing the func-
tional:

Ξ =

𝑅∑︁
𝑟=1

[
(𝑥𝑟 − 𝑥𝑟 )2 + (𝑦𝑟 − 𝑦𝑟 )2 + (𝑧𝑟 − 𝑓 (𝑥𝑟 , 𝑦𝑟 ))2

]
for

𝑓 (𝑥𝑟 , 𝑦𝑟 ) = 𝑒𝐶0+𝑥𝑟𝐶2+𝑦𝑟𝐶6+𝑥𝑟 𝑦𝑟𝐶8𝑥𝑟
𝐶1+𝑦𝑟𝐶7𝑦𝑟

𝐶3+𝑥𝑟𝐶3+𝐶4 log(𝑥𝑟 )

Application of our method yields the values: 𝐶0 = −0.1347;
𝐶1 = 0.9973;𝐶2 = −2.0059;𝐶3 = 2.9967;𝐶6 = −1.0132, for which
the mean squared error takes the value: Δ = 0.00974, which is
considered a very good approximation.

Fig. 4 shows the optimal reconstructed surface (top) and its su-
perposition with the point cloud (bottom). Note again the excellent
visual quality of the surface reconstruction from the point cloud in
Fig. 3, which confirms our good numerical results.

5.3 Example III
For the third example, we consider the cloud point depicted in Fig.
5. In this case, the point cloud consists of 𝑅 = 27, 261 data points,
which is fitted according to Eq. (4) with the constraints in Eq. (6).

Figure 5: Original point cloud of Example III.

Application of our method yields the values: 𝐶0 = 1.0029;𝐶1 =

2.9726;𝐶2 = −1.9850;𝐶3 = 1.0603;𝐶6 = −1.0474;𝐶8 = −0.9806,
for which the mean squared error takes the value: Δ = 0.05156, a
satisfactory indicator of a good approximation. The resulting best
approximating surface is shown in Fig. 6 (top) and superimposed
by the original point cloud in Fig. 6 (bottom).

6 CONCLUSIONS AND FUTUREWORK
This paper addresses the surface reconstruction problem from point
clouds of 3D data points obtained by reverse engineering processes
from a manufactured workpiece. In this work we assume that the
point cloud can be approximated by surfaces represented mathemat-
ically as a combination of exponential, polynomial, and logarithmic
functions and subjected to several constraints. The resulting non-
linear constrained continuous minimization problem is solved by
using a metaheuristic method called cuckoo search algorithm with
Lévy flights. The application of this method to a benchmark of three
examples of point clouds shows that the method is able to provide
good visual and numerical results. We conclude that the method is
promising towards its application to manufactured workpieces in
real industrial settings.

In spite of these encouraging results, the method can still be fur-
ther extended in several ways. On the one hand, one the limitations
of this work is that the models used to fit the point clouds have
been manually selected by the authors, based on their previous
experience when working with several point clouds. However, an
automatic procedure to select the most suitable model would be



Figure 6: Example III: (top) Reconstructed surface; (bottom)
reconstructed surface and data points.

a great enhancement for this method. On the other hand, we also
want to extend this method to other families of basis functions.

Finally, we want to apply this methodology to workpieces from
different manufacturing industries subjected to other types of func-
tional constraints. This will be part of our plans for future work in
the field.

ACKNOWLEDGMENTS
Akemi Gálvez and Andrés Iglesias thank the financial support
from the project PDE-GIR of the European Union’s Horizon 2020
research and innovation programme, in the Marie Sklodowska-
Curie Actions (MSCA) programme, with grant agreement of refer-
ence number H2020-MSCA-RISE-2017-778035, and also from the
Agencia Estatal de Investigación (AEI) of the Spanish Ministry of
Science and Innovation, for the grant of the Computer Science
National Program with reference number PID2021-127073OB-I00
of the MCIN/AEI/10.13039/501100011033/FEDER, EU. Iztok Fister
thanks the Slovenian Research Agency for the financial support
under Research Core Funding No. P2-0042 - Digital twin. Iztok
Fister Jr. thanks the Slovenian Research Agency for the financial
support under Research Core Funding No. P2-0057.

REFERENCES
[1] Arnold, B., Castillo, E., Sarabia, J.M.:Conditionally Specified Distributions. Springer

Verlag, Lecture Notes in Statistics, 73, Berlin, Germany (1992).
[2] Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered

points based on neural network and PDE techniques. IEEE Trans. on Visualization
and Computer Graphics, 7(1), 1–16 (2001).

[3] Barnhill, R.E.: Geometric Processing for Design and Manufacturing. SIAM, Philadel-
phia (1992).

[4] Castillo, E., Iglesias, A.: Some characterizations of families of surfaces using
functional equations. ACM Transactions on Graphics, 16(3), 296–318 (1997).

[5] Castillo, E., Iglesias, A., Ruiz, R.: Functional Equations in Applied Sciences. Else-
vier Science, Mathematics in Science and Engineering, 199, Amsterdam, The
Netherlands (2004).

[6] Dierckx, P.: Curve and Surface Fitting with Splines. Oxford University Press,
Oxford (1993).

[7] Farin, G.:Curves and surfaces for CAGD (5th ed.).MorganKaufmann, San Francisco
(2002).

[8] Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J., Espinola, J.: Bézier curve and surface
fitting of 3D point clouds through genetic algorithms, functional networks and
least-squares approximation. Lectures Notes in Computer Science, 4706, 680–693
(2007).

[9] Gálvez, A., Iglesias A.: Efficient particle swarm optimization approach for data
fitting with free knot B-splines. Computer-Aided Design, 43(12), 1683–1692 (2011).

[10] Gálvez, A., Iglesias A., Puig-Pey J.: Iterative two-step genetic-algorithm method
for efficient polynomial B-spline surface reconstruction. Information Sciences,
182(1), 56–76 (2012).

[11] Gálvez A., Iglesias A.: Particle swarm optimization for non-uniform rational B-
spline surface reconstruction from clouds of 3D data points. Information Sciences,
192(1), 174–192 (2012).

[12] Gálvez A., Iglesias A.: A new iterative mutually-coupled hybrid GA-PSO approach
for curve fitting in manufacturing. Applied Soft Computing, 13(3), 1491–1504
(2013).

[13] Gálvez A., Iglesias A., Avila, A., Otero, C., Arias, R., Manchado, C.: Elitist clonal
selection algorithm for optimal choice of free knots in B-spline data fitting.
Applied Soft Computing, 26, 90–106 (2015).

[14] Gu, P., Yan, X.: Neural network approach to the reconstruction of free-form
surfaces for reverse engineering. Computer-Aided Design 27(1), 59–64 (1995).

[15] Hoffmann, M.: Numerical control of Kohonen neural network for scattered data
approximation. Numerical Algorithms, 39, 175–186 (2005).

[16] Iglesias, A., Echevarría, G., Gálvez, A.: Functional networks for B-spline surface
reconstruction. Future Generation Computer Systems, 20(8), 1337–1353 (2004).

[17] Iglesias, A., Gálvez, A.: Hybrid functional-neural approach for surface recon-
struction. Mathematical Problems in Engineering, Article ID 351648, 13 pages
(2014).

[18] Iglesias, A., Gálvez, A.: Memetic electromagnetism algorithm for surface recon-
struction with rational bivariate Bernstein basis functions. Natural Computing,
16, 511–525 (2017).

[19] Iglesias, A., Gálvez, A., Avila, A.: Immunological approach for full NURBS recon-
struction of outline curves from noisy data points in medical imaging. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 15 (6), 929–1942 (2018).

101



[20] Iglesias, A., Gálvez, A., Collantes, M.: Multilayer embedded bat algorithm for
B-spline curve reconstruction. Integrated Computer-Aided Engineering, 24(4),
385–399 (2017).

[21] Iglesias, A., Gálvez, A., Suárez, P., Shinya, M., Yoshida, N., Otero, C., Manchado,
C., Gómez-Jauregui, V.: Cuckoo search algorithm with Lévy flights for global-
support parametric surface approximation in reverse engineering. Symmetry, 10,
Paper 58 (2018).

[22] Jing, L., Sun, L.: Fitting B-spline curves by least squares support vector machines.
In: Proc. of the 2nd. Int. Conf. on Neural Networks & Brain. Beijing (China). IEEE
Press, 905–909 (2005).

[23] Jupp, D.L.B.: Approximation to data by splines with free knots. SIAM Journal of
Numerical Analysis, 15, 328–343 (1978).

[24] Knopf, G.K., Kofman, J.: Adaptive reconstruction of free-form surfaces using Bern-
stein basis function networks. Engineering Applications of Artificial Intelligence,
14(5), 577–588 (2001).

[25] Ma, W.Y., Kruth, J.P.: Parameterization of randomly measured points for least
squares fitting of B-spline curves and surfaces. Computer-Aided Design, 27(9),
663–675 (1995).

[26] Park, H.: An error-bounded approximate method for representing planar curves
in B-splines. Computer Aided Geometric Design 21, 479–497 (2004).

[27] Park, H., Lee, J.H.: B-spline curve fitting based on adaptive curve refinement
using dominant points. Computer-Aided Design 39, 439–451 (2007).

[28] Patrikalakis, N.M., Maekawa, T.: Shape Interrogation for Computer Aided Design
and Manufacturing. Springer Verlag, Heidelberg (2002).

[29] Pottmann, H., Leopoldseder, S., Hofer, M., Steiner, T., Wang, W.: Industrial ge-
ometry: recent advances and applications in CAD. Computer-Aided Design, 37,
751–766 (2005).

[30] Powell, M.J.D.: Curve fitting by splines in one variable. In: Hayes, J.G. (editor):
Numerical approximation to functions and data. Athlone Press, London (1970).

[31] Rice, J.R.: The Approximation of Functions. Vol. 2. Addison-Wesley, Reading, MA
(1969).

[32] Sarfraz, M., Raza, S.A.: Capturing outline of fonts using genetic algorithms and
splines. Proc. of Fifth International Conference on Information Visualization IV’2001,
IEEE Computer Society Press,738–743 (2001).

[33] Varady, T., Martin, R.: Reverse Engineering. In: Farin, G., Hoschek, J., Kim, M.
(eds.): Handbook of Computer Aided Geometric Design. Elsevier Science (2002).

[34] Wang, W.P., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by
curvature-based squared distance minimization. ACM Transactions on Graphics,
25(2), 214–238 (2006).

[35] Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms (2nd. Edition). Luniver Press,
Frome, UK (2010).

[36] Yang, X.S., Deb, S.: Cuckoo search via Lévy flights. In: Proc. World Congress on
Nature & Biologically Inspired Computing (NaBIC). IEEE, 210–214 (2009).

[37] Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Mathemat-
ical Modelling and Numerical Optimization, 1(4), 330–343 (2010).

[38] Yoshimoto, F., Moriyama, M., Harada, T.: Automatic knot adjustment by a genetic
algorithm for data fitting with a spline. Proc. of Shape Modeling International’99,
IEEE Computer Society Press, 162–169 (1999).

[39] Yoshimoto, F., Harada T., Yoshimoto, Y.: Data fitting with a spline using a real-
coded algorithm. Computer-Aided Design, 35, 751–760 (2003).

[40] Zhao, X., Zhang, C., Yang, B., Li, P.: Adaptive knot adjustment using a GMM-based
continuous optimization algorithm in B-spline curve approximation. Computer-
Aided Design, 43, 598–604 (2011).

102


	Abstract
	1 Introduction
	1.1 Reverse engineering
	1.2 Surface reconstruction
	1.3 Aims and structure of this paper

	2 Previous Work
	3 The Optimization Problem
	4 The Proposed Method
	4.1 The cuckoo search algorithm
	4.2 Population representation
	4.3 Parameter Tuning
	4.4 Implementation issues

	5 Experimental Results
	5.1 Example I
	5.2 Example II
	5.3 Example III

	6 Conclusions and Future Work
	Acknowledgments
	References

