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Abstract. Swarm intelligence is based on the recently-acquired notion
that sophisticated behaviors can also be obtained from the cooperation
of several simple individuals with a very limited intelligence but coopera-
ting together through low-level interactions between them and with the
environment using decentralized control and self-organization. Such in-
teractions can lead to the emergence of intelligent behavior, unknown to
the individual agents. One of the most remarkable applications of swarm
intelligence is swarm robotics, where expensive and sophisticated robots
can be replaced by a swarm of simple inexpensive micro-robots. In this
context, this paper introduces a general-purpose hardware robotic plat-
form suitable for swarm robotics. With a careful choice of its main com-
ponents and its flexible and modular architecture, this robotic platform
provides support to the most popular swarm intelligence algorithms by
hardware. As an illustration, the paper considers four of the most popular
swarm intelligence methods; then, it describes the most relevant hard-
ware features of our approach to support such methods (and arguably
many other swarm intelligence approaches as well) for swarm robotics.
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1 Introduction

Swarm intelligence (SI) has been regarded as one of the most exciting new
avenues of research in artificial intelligence (AI) during the last few decades.
Unlike many other areas in AI, individuals in SI do not need to be actually
intelligent in its most canonical sense. Instead, the intelligence in SI is typically
obtained from the aggregation of very simple behavioral patterns by unsophisti-
cated agents collaborating together to solve a complex problem. Amazingly, this
kind of collective behavior had already been observed in some natural groups
for centuries. Consider, for instance, the dynamics of colonies of social insects
(ants, termites, bees, fireflies), where the group as a whole is able to construct
complex nests and carry out many different sophisticated tasks unattainable
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for its individuals members. Another typical example is the behavior of a flock
of birds when moving all together following a common tendency in their dis-
placement. Other examples from nature include animal herding, fish schooling,
and many others. Furthermore, these examples have been used as metaphors for
some of the most popular SI methods, such as ant colony optimization (ACO)
or particle swarm optimization (PSO). In SI methods, there is not a centralized
intelligence controlling the swarm, taking decisions, and sending orders to the
individual members about how to behave. In fact, such individual agents follow
simple rules and have a very limited knowledge and intelligence. However, as a
whole, the social group is capable of complex collective behaviors, which emerge
from a small set of simple behavioral rules exploiting only low-level interactions
between individuals and with the environment (stigmergy) using decentralized
control and self-organization. The interested reader is referred to [4, 7, 16] for a
comprehensive overview about the field of swarm intelligence, its history, main
techniques, and applications. See also Section 2 for a succinct description of some
popular swarm intelligence methods.

A major reason to explain this increasing interest on swarm intelligence is
its potential application in several fields. An illustrative example is given by
swarm robotics, a field where swarms of simple and generally inexpensive self-
organizing micro-robots are used to replace sophisticated and expensive robots
to accomplish complex tasks [2, 5, 9, 10, 12, 13]. As remarked by several authors
[1, 3], swarm robotic systems offer several interesting advantages, such as:

– Improved performance by parallelization: swarm intelligence systems are very
well suited for parallelization, because the swarm members can perform dif-
ferent actions at different locations simultaneously. This feature makes the
swarm more flexible and efficient for complex tasks, as individual robots (or
groups of them) can solve different parts of a complex task independently.

– Task enablement: groups of robots can do certain tasks that are impossible or
very difficult for a single robot (e.g., collective transport of too heavy items,
dynamic target tracking, cooperative environment monitoring, autonomous
surveillance of large areas).

– Scalability: inclusion of new robots into a swarm does not require reprogram-
ming the whole swarm. Furthermore, because interactions between robots
involve only neighboring individuals, the total number of interactions within
the system does not increase dramatically by adding new units, making the
system highly scalable.

– Distributed sensing and action: a swarm of simple interconnected mobile
robots deployed throughout a large search space possesses greater exploratory
capacity and a wider range of sensing than a sophisticated robot. This makes
the swarm much more effective in tasks such as exploration and navigation
(e.g., in disaster rescue missions), nanorobotics-based manufacturing, mi-
crobotics for human body diagnosis, and many others.

– Fault tolerance: due to the decentralized and self-organized nature of the
swarm, the failure of a single unit (or a small group of them) does not affect
the completion of the given task.
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All these advantages motivated a great interest in swarm robotics during the
last two decades. The interested reader is referred to [8, 11–13] and references
therein for a brief description about previous work in the field.

1.1 Aims and structure of this paper

In this paper, we introduce a first prototype of a hardware robotic platform for
swarm robotics designed to meet some important differential features: It is affordable. Since the robots must operate in swarms, it is important

to keep their individual price as low as possible. In our proposal, we avoid
expensive components, so that each robot costs about 50�60US$. It is general-purpose. Instead of a specialized goal-oriented robot, our design
is general-purpose. This is possible thanks to its flexible design and modular
architecture, avoiding fixed parts so that different components (e.g., sensors,
holders, frames) can readily be added or removed to meet different goals. It is suitable for swarm robotics. In spite of its low-cost design, the robot
CPU and memory are powerful enough to support some of the most popular
swarm intelligence techniques running locally at software level. Furthermore,
the robots of the swarm are highly interconnected with one another via
standard communication interfaces such as Wifi and Bluetooth (in our case,
they are built-in in our microprocessor single-board).

The structure of this paper is as follows: Sect. 2 provides a very brief descrip-
tion of some popular SI methods. Sect. 3 describes our design of the hardware
robotic platform, including its architecture and main components, and the pro-
gramming framework. Then, Sect. 4 discusses the main features of our proposal
that provide support to the methods in Sect. 2 for swarm robotics applications.
The paper closes with the conclusions and some future work in the field.

2 Some Popular Swarm Intelligence Algorithms

In this section, some of the most typical SI algorithms are briefly revisited. Since
they are very popular and widely reported in the literature, we restrict our
discussion to their main features without further detail, and refer the interested
reader to some bibliographic entries for a fully informed description. Relevant
information about these methods will be used for our discussion on our robotic
platform approach in Sect. 4.

2.1 Particle swarm optimization

Particle Swarm Optimization (PSO) is a global stochastic optimization algo-
rithm for dealing with problems where potential solutions (called particles) can
be represented as vectors in a search space [6, 7]. Particles are distributed over
such space and provided with an initial velocity and the capacity to communicate
with other neighbor particles, even the entire swarm. Particles “flow” through
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the solution space and are evaluated according to some fitness function after
each instance. Particles evolution is regulated by two memory factors: memory
of their own best position and knowledge of the global or their neighborhood’s
best. Particles of a swarm communicate good positions to each other and adjust
their own position and velocity based on these good positions. As the swarm
iterates, the fitness of the global best solution improves so the swarm eventually
reaches the best solution. To this aim, each particle modifies its position Pi along
the iterations by storing the coordinates P b

i associated with the best solution
(fitness) achieved so far. These values account for the memory of the best parti-
cle position. In addition, members of a swarm can communicate good positions
to each other, so they can adjust their own position and velocity according to
this information. To this purpose, we also collect the best global position P b

g

from the initial iteration. The evolution for each particle i is given by:

Vipk � 1q � w Vipkq � γ1R1rP b
g pkq � Pipkqs � γ2R2rP b

i pkq � Pipkqs
Pipk � 1q � Pipkq � Vipkq (1)

where Pipkq and Vipkq are the position and the velocity of particle i at time k,
respectively, w is called inertia weight and decide how much the old velocity will
affect the new one and coefficients γ1 and γ2 are constant values called learning

factors, which decide the degree of affection of P b
g and P b

i . This procedure is
repeated several iterations until a termination condition is reached. The reader
is referred to [4, 6, 7, 16] for further details on this very popular algorithm.

2.2 Bat algorithm

The bat algorithm (BA) is a bio-inspired SI method proposed in 2010 to solve
optimization problems [18, 19]. It is based on the behavior of microbats, which
use a type of sonar called echolocation, with varying pulse rates of emission and
loudness, to detect prey, avoid obstacles, and locate their roosting crevices in
the dark. The idealization of the echolocation of microbats is as follows:

1. Bats use echolocation to sense distance and distinguish between food, prey
and background barriers.

2. Each virtual bat flies randomly with a velocity vi at position (solution) xi

with a fixed frequency fmin, varying wavelength λ and loudness A0 to search
for prey. As it searches and finds its prey, it changes the frequency of their
pulses and adjust the rate of pulse emission r, depending on the proximity
of the target.

3. It is assumed that the loudness will vary from an (initially large and positive)
value A0 to a minimum constant value Amin.

Under these idealized rules, the algorithm considers an initial population of bats,
each representing a potential solution of the optimization problem and having a
location xi and velocity vi. The algorithm initializes these variables with suitable
random values. Then, the pulse frequency, pulse rate, and loudness are computed
for each individual bat. The swarm evolves in a discrete way over generations
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until the maximum number of generations is reached. For each g and each bat,
new frequency, location and velocity are computed as:

f
g
i � f

g
min � βpfg

max � f
g
minq (2)

v
g
i � v

g�1

i � rxg�1

i � x�s fg
i (3)

x
g
i � x

g�1

i � v
g
i (4)

where β P r0, 1s follows the random uniform distribution, and x� represents
the current global best location (solution), which is obtained through evaluation
of the objective function at all bats and ranking of their fitness values. The
best current solution and a local solution around it are probabilistically selected
according to some given criteria. Then, search is intensified by a local random
walk. For this local search, once a solution is selected among the current best
solutions, it is perturbed locally through a random walk. If the new solution
achieved is better than the previous best one, it is probabilistically accepted
depending on the value of the loudness. In that case, the algorithm increases the
pulse rate and decreases the loudness. The reader is referred to [18–20, 23] for
further details and in-depth analysis of the method and its implementation.

2.3 Firefly algorithm

The firefly algorithm (FFA) is a SI algorithm introduced in 2009 for optimization
problems [14]. It is based on the social flashing behavior of fireflies in nature. The
key ingredients of the method are the variation of light intensity and formulation
of attractiveness. In general, the attractiveness of an individual is assumed to be
proportional to their brightness, which in turn is associated with the encoded
objective function. In the firefly algorithm, there are three particular idealized
rules, based on some of the major flashing characteristics of real fireflies:

1. All fireflies are unisex, so that one firefly will be attracted to other fireflies
regardless of their sex;

2. The degree of attractiveness of a firefly is proportional to its brightness,
which decreases as the distance from the other firefly increases due to the
fact that the air absorbs light. For any two flashing fireflies, the less brighter
one will move towards the brighter one. If there is not a brighter or more
attractive firefly than a particular one, it will then move randomly;

3. The brightness or light intensity of a firefly is determined by the value of the
objective function of a given problem. For optimization problems, the light
intensity can simply be proportional to the value of the objective function.

For a full description of this method, the reader is kindly referred to [14–17].

2.4 Cukoo search algorithm

The cuckoo search algorithm (CSA) is a SI method proposed in 2009 [21] and
inspired by the obligate interspecific brood-parasitism of some cuckoo species
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that lay their eggs in the nests of host birds of other species to escape from the
parental investment in raising their offspring and to minimize the risk of egg loss
to other species. In CSA, the eggs in the nest represent the pool of candidate
solutions while the cuckoo egg represents a new coming solution. The method
uses these new (potentially better) solutions associated with the parasitic cuckoo
eggs to replace the current solution associated with the eggs in the nest. This
replacement, carried out iteratively, will eventually lead to a very good solution.
For computational reasons, CSA is also based on three idealized rules [22]:

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;

2. The best nests with high quality of eggs (solutions) will be carried over to
the next generations;

3. The number of available host nests is fixed, and a host can discover an alien
egg with a probability pa P r0, 1s. For simplicity, this assumption can be
approximated by a fraction pa of the n nests being replaced by new nests
(with new random solutions at new locations).

More details on this algorithm can be found in [16, 17, 21, 22].

3 Hardware Robotic Platform for Swarm Robotics

3.1 Hardware architecture and components

The main components of our robotic platform are shown in Figure 1. They are:

1. the chassis: the robot is mounted on a rigid chassis, in orange in that figu-
re. The chassis and other mechanical parts such as the holders have been
generated by 3D printing from a PLA (polylactic acid) filament by using a
domestic desktop 3D printer. The chassis hosts the battery with its board
connectors and the electronics of our robotic unit.

2. the wheels and servomotors: robot movement is provided through two side
wheels with power supplied by two continuous rotation servomotors, dis-
played in the picture. Unlike ordinary motors, servomotors can be individu-
ally controlled; they only require the angle of rotation for motion. Rotation
is supported through an omni-directional ball caster wheel able to swivel in
any direction.

3. a battery: a rechargeable power-efficient 3.7V lithium-ion polymer battery is
used in our implementation, with the advantage that it has higher specific
energy than other lithium batteries.

4. a boost step-up power: for the battery to be voltage-compatible, we also in-
clude the module Lithium 134n3p charger, a built-in charge and discharge
power MOS operating at an input voltage in the range 3.7V�5.5V with out-
put voltage 5V and providing charge and discharge management, tempera-
ture control and protection against over-temperature, output over-voltage,
short circuit, heavy load over-charge and over-discharge.
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Fig. 1. Main components of our hardware robotic platform for swarm robotics.

5. a single-board micro-computer: in our implementation we use the popu-
lar micro-computer Raspberry Pi Zero W, one of the most affordable and
cost-effective micro-computers in the market, with a price of 10US$. This
micro-computer comes with a 32-bit RISC ARMv6Z architecture, featuring
a Broadcom BCM2835 system on a chip application processor. Its CPU is the
ARM1176JZF-S core by ARM, running at 1GHz. It also includes a graphical
processor unit Broadcom Video Core IV running at 250 MHz, with support
to Open GL and featuring a H.264/MPEG-4 AVC high-profile decoder and
encoder with support to 1080p (high-definition video mode). The system
comes with 512 MB (shared with the GPU), 1 micro-USB (direct from the
BCM2835 chip), MIPI camera interface for video input, mini-HDMI at 1080p
resolution and composite video for video output, 2 boards via the serial bus
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I2S for audio input, a stereo audio through PWM on GPIO for audio output,
and a MicroSDHC non-volatile memory card for data storage.

6. built-in communication interface: our single-board chip also provides sup-
port for communications via Bluetooth 4.1 for very short distances (about
a range of 10 meters or less) , 802.11n wireless LAN for wider areas (up
to 100 meters), and a FM receiver working in the range 65 MHz to 108
MHz FM bands, all through the Cypress CYW43438 wireless chip. It also
has an unpopulated HAT-compatible 40-pin GPIO header, and composite
video and reset headers. These wireless communication options are used for
communication and data exchange over short distances among the robots of
the swarm and with a central server for tracking purposes.

7. a stripboard: used for further connectivity of all electronic components. It is
located close to the board chip to gain access to all micro-computer pins.

8. an ultrasound sensor: in this work, we use the ultrasound sensor HC-SR04,
manufactured by ElecFreaks. It is an ultrasonic sensor operating at 5V DC
that uses sonar to compute the distance to an object. Each HC-SR04 mo-
dule includes an ultrasonic transmitter, a receiver and a control circuit, with
4 pins for power, trigger (transmitter), echo (receiver), and ground. Each
ultrasound pulse of our sensors operates at a constant frequency of 40 kHz,
sending an 8 cycle burst of ultrasound pulses. The sensor captures its echo
with signals lasting in the order of milliseconds. The accuracy range of the
sensor is about 3 millimeters, with a traveling range of pulses between 2–500
centimeters. The ultrasound sensor is used for collision avoidance with static
and dynamic objects (including other robots in the swarm) as well as with
the boundaries of the physical 3D environment.

9. a LED RGB: a hand-made diode with RGB lights used to indicate different
robot states, such as active, idle, sleep, and others.

10. a magnetometer: in this work, we use the triple-axis magnetometer board
HMC-5883L. This user-friendly compass is a 3.3V max chip with added cir-
cuitry to make it 5V-safe logic and power, so that it can be connected to
either 3 or 5V microcontrollers. It uses I2S serial bus for easy interface to
communicate. Its internal functioning is based on the anisotropic magne-
toresistive (AMR) technology by Honeywell, with AMR directional sensors
having a full range of �8 gauss an a resolution of up to 2 milligauss. The
magnetometer is used in this work for global spatial orientation of the robotic
units of the swarm regardless their physical environment.

11. infrared sensors: used for collision avoidance, scene exploration and naviga-
tion throughout the 3D environment. In this work we consider a set of three
infrared sensors deployed on a semi-ring holder located in the front of the
robot to cover a wider exploration area. One of the IR sensors is located in
the middle, and the other two near the corners in the front. They can detect
obstacles in the range of 30 centimeters in the sun light. They also come
with a variable resistance to adapt the sensors to different short distances.

12. a mini-camera: used for image capture and navigation. Our model provides
a resolution of 3280 � 2464 pixels, and support video capture at a frame
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Fig. 2. Four views of the proposed general-purpose hardware robotic platform: (top-
left) top view; (top-right) side view; (bottom-left) front view; (botom-right) rear view.

rate of 30 FPS (frames per second) for a resolution of 1080p, 60 FPS at 720p
and 90 FPS at 480p.

13. an OLED micro-display: a 0.96 inches SDD1306 chipset with serial connec-
tion I2C, and power consumption of 20mA. It provides a resolution of 128�64
pixels and vision angle of 160 degrees and is mainly used to display relevant
information for tracking purposes and as user-interface with the board.

All these components are connected to different I/O pins in a rather standard
way. The detailed description of these connections is out of the scope of this
paper and will be omitted here to keep the paper to a manageable size.

3.2 Programming framework

There are several operating systems and programming frameworks that can be
used for the Raspberry Pi Zero micro-computer. Among all possibilities for the
operating system, we recommend to use Raspbian, a free operating system based
on Debian, optimised for the Raspberry Pi hardware. Raspbian comes with over
35,000 packages and is the recommended operating system for normal use on
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a Raspberry Pi. Other popular options are Snappy Ubuntu, Pidora, Arch Linux

ARM, Gentoo Linux, FreeBSD, or RISC OS Pi.
Regarding the programming framework, the choice is strongly dependent on

the programming language used for coding. In our implementation, we propose
to use Phyton running on Wing IDE. We remark that Wing IDE is not directly
supported by the Raspberry Pi, although it is possible to set up Wing IDE on
a computer connected to the Raspberry Pi to generate and debug Python code
remotely. Other possibilities include Kivy, GTK+, PyQt, and Glade.

4 Support Features for Swarm Intelligence Algorithms

A major ingredient of all SI methods (not only those in this paper) is a popu-
lation of unsophisticated individuals with the ability to compute their own po-
sitions according to some evolution equations and communicate such positions
and other information to other members of the swarm. All these relevant fea-
tures are incorporated in our proposal. We consider a swarm of individuals that
are identical replicas of the hardware robotic platform described in previous sec-
tion. This micro-robot includes all hardware components and features required
to implement the previous methods for swarm robotics at full extent:

– Its Raspberry Pi Zero W micro-processor is powerful enough to perform all
the required computations in real time for all methods described. Although
this feature can arguably be accomplished with (cheaper) micro-controllers
(e.g., Arduino), our proposal is much more powerful. Instead of running one
program many times as micro-controllers do, we have a general-purpose full-
fledged computer running on Linux and with the ability to run multiple
programs in a complex way. Consequently, we have no limitations in terms
of the SI algorithms to be implemented, the number of individuals in the
swarm (even multiple swarms are easily supported) and the number and
complexity of tasks the robotic units are assigned.

– All SI methods require global positioning, which is computed with the mag-
netometer and its built-in digital compass, so that the robot can determine
its current position with suitable accuracy for many practical applications.

– All SI methods require communication capabilities. Built-in-board Wifi and
Bluetooth interfaces are included in our robots, allowing them to communi-
cate useful information (e.g., position) to other members of the swarm.

– Our robots support collision avoidance. This feature is not included in the SI
methods, but it is a must for swarm robotics, where robots moving in a real
environment can collide with static and dynamic objects. Our robotic units
are equipped with several sensors (ultrasounds, infrared, camera), global po-
sitioning (magnetometer and digital compass), and communication features
(Wifi, Bluetooth) to avoid collisions with obstacles and other robots.

– Different sensors can be used to cope with the specific features and needs
required by each SI method, as follows: The PSO method relies on positions, velocities and orientations. Changes

in velocity and position can be computed through an accelerometer,
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while changes in orientation and rotational velocity can be measured
through a gyroscope. These sensors are not currently embedded into the
Raspberry Pi board, but they can easily be attached to it. In our case,
we rely on the servomotors to compute distance and velocity. The work in [11] proved that some ultrasound sensors are ideal for the
bat algorithm. We propose to use the same sensor in this approach. In this paper, we argue that infrared sensors are adequate for the firefly
algorithm. Infrared sensors can be used to measure distances, as required
by the algorithm. Furthermore, since these sensors can also determine
how “bright” the light is, we can go even further with the nature-based
metaphor and use them to embed the concepts of brightness and attrac-
tiveness by hardware instead of computing them exclusively by software. Following the rationale of the previous item, a combination of some of
our sensors (possibly including the mini-camera) can also be used for the
cuckoo search algorithm.

5 Conclusions and Future Work

This paper introduces a general-purpose hardware robotic platform suitable for
swarm robotics. Our approach is based on a careful choice of its main hardware
components (computing unit, sensors, communication interfaces) to support the
most popular swarm intelligence algorithms by hardware. Our design has also
a very flexible and modular architecture so that it can be adapted to different
swarm intelligence methods and many applications with minimal (if any) modifi-
cations. As an illustration, four examples of popular swarm intelligence methods
(particle swarm optimization, firefly algorithm, bat algorithm, and cuckoo search
algorithm) are considered in this paper. The most important hardware features
of our approach to support such methods (and arguably many other swarm
intelligence approaches as well) for swarm robotics are discussed.

Future work includes the consideration of other swarm intelligence approaches
with the (possible) addition of extra components to support them. On the other
hand, we plan to apply our robotic platform to real-world problems that could
benefit from the swarm robotics principles and techniques. Reducing the size
while maintaining (or even increasing) the performance of our robotic platform
is also part of our plans for future work in the field.
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