

Online numerical association rule miner

 A b s t r a c t

Green AI refers to those AI methods that are friendly to the environment, i.e., are capable to keep the con- sumption of electrical energy at a minimum. In

this sense, a new numerical association rule miner is pro- posed that presents a combination of the already existing offline uARMSolver, belonging to a Red

AI class, and a newly developed onlineNARM miner representing the new Green AI. The former is devoted to exhaustive search of the evolutionary

solution space, while the latter for faster exploiting of already explored search space. The experimental results on four transaction databases showed that,

by sacrificing the quality of the results by 0:7 %, by the onlineNARM we can obtain the results almost 85:0 % faster than with the uARMSolver in the

best test scenario.

1. Introduction

The implications and expanding the number of applications in

Artificial Intelligence (AI) have an impact on almost every step of

human endeavor. The main methods under the umbrella of AI have

become a central point for researchers and practitioners across the

globe. The accuracy of the modern AI solutions now achieve limits

that were unimaginable several decades ago. For example, AI

image recognition methods are nowadays going closer to or even

beyond the accuracy achieved by humans. On the other hand, AI

is now helping in searching for new therapeutics [1] at a much fas-

ter pace than it was in the past. Fighting climate change is another

role of AI these days, which is also researched heavily [2–4].

Indeed, climate change should be considered as one of the most

significant challenges the humanity is facing today [5].

Even though AI influences on our lives drastically in a positive

sense, every positive thing has its price. In the case of AI, one of

those is high global energy consumption to emphasize that this

process is still happening today. The accuracy obtained by AI solu-

tions is a subject of many experiments, algorithm adaptations,

parameter tunings, and optimizations that are computationally

complex processes. Significantly, modern deep learning, neural

architecture search, or AutoML pipelines are amongst the major

contributors to the global carbon footprint that AI addresses.

Therefore, AI impacts climate change in more than one way. Inter-

estingly, Nordgren [6] pinpointed the dual role of AI concerning cli-

mate change: on the one hand, AI contributes to the fight against

climate change, while on the other, it also contributes to climate

change itself.

Human life has become endangered due to climatic changes on

the Earth, especially global warming. A solution to this problem

presents the so-called ”carbon law”, according to which emissions

should be halved every decade from 2020 to 2050, when they

should fall to around zero [7]. The name of the law was given in

reference to exponential technologies, whose output per size is

accelerating constantly, e.g., the silicon chip following Moore’s

law, or modern technologies such as 5G, the Internet of Things,

AI, which follows their exponential increases of output per size

in specific periods. The most advantages towards a carbon-free

society can be achieved by carbon-free digital solutions in domains

like: Energy, Manufacturing, Agriculture, Building, Services, Trans-

port and Traffic Management. Interestingly, these technologies,

who are also part of AI, can help to reduce global carbon emissions

by even 15 % [8].

The issues mentioned above are nowadays being investigated

extensively in research communities. Researchers are aware that

training large-scale computational models consumes a lot of elec-

tricity, contributing to the global carbon footprint. In recent years,

the term Red AI has been coined, which exposes [9] that numerous

AI methods are unfriendly to the environment [10]. On the con-

trary, all the AI methods that are friendly to the environment are

referred to as Green AI. In line with this, different industries and

start-ups are also trying to follow Green AI due to the environmen-

.

I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43

34

i

w ¼

8
< u

:

i

i
x

(
w

i i

tal impact, the reduction of energy, and potentially saving money.

This will undoubtedly come to the fore as electricity becomes more

expensive due to several world crises and high inflation.

How to reduce computational power, to merge some critical

steps in training computational models, to simplify preprocessing,

or even Machine Learning (ML) pipelines, are topical questions that

present challenges for the research community nowadays. Some

solutions are smaller datasets used for training, lighter models

[11], more optimized preprocessing tasks, different hardware

architectures, or even different neural network architectures, e.g.,

spiking neural networks [12].

Association Rule Mining (ARM) is a part of data mining, where

associations that are presented as implications are searched for

within the transaction databases [13]. Usually, the transaction

databases can represent big data when dealing primarily with mar-

ket basket analyses or other business data [14]. We try to obtain

new insights that help us to adapt to business needs. Nowadays,

there are two primary methods for ARM, which can be classified

in two groups, i.e., deterministic and stochastic. The deterministic

methods ensure that we find an optimum solution in an unpre-

dictable time. Still, we sacrifice computational and time resources,

while the stochastic nature of an algorithm does not guarantee the

best solution, but is much less expensive in terms of computational

resources. Numerical Association Rule Mining (NARM) is a variant

of canonical ARM, which can also operate with numerical and cat-

egorical attributes concurrently [15,16]. The main benefit of this

approach is that it can generally provide more accurate results. A

considerable portion of algorithms for NARM are based on stochas-

tic nature-inspired population-based metaheuristics, which are

well-known algorithms capable for exploring a larger search space.

This is needed when transaction databases consist of many numer-

ical attributes.

All these arguments can confirm that NARM is computationally

a very expensive process, also due to the fact that the population-

based algorithms need approximately between 25 to 51 indepen-
dent runs to minimize the effect of randomness. Thus, there are

formed work is summarized and the directions are outlined for

the future work.

2. Background information

The background information, needed for understanding the

subjects that follows, is discussed in this section. The fundamentals

of Differential Evolution (DE) are reviewed first. Actually, this algo-

rithm is used for online NARM due to its simplicity, efficiency and

adaptational ability. The basics of NARM are illustrated next. The

section is concluded with a description of a uARMSolver frame-

work running on most Linux distributions as a package for solving

the NARM problems [18].

2.1. Differential Evolution

DE belongs to a class of stochastic nature-inspired population-

based algorithms. Although it bases on a strong mathematical def-

inition of vector differences, it is considered as an evolutionary

algorithm because its crossover, mutation, and selection operators

play a similar role as presented by Darwinian natural evolution

[19]. The algorithm was developed by Storn and Price in 1995

[20] and gained quickly a big community of developers quickly

by solving the continuous as well as discrete hard problems. The

adaptational ability of the DE cause many new variants to emerge

since its birth.

The DE is a population-based algorithm, where its population

consists of NP real-valued vectors. Thus, each solution represents

a particular solution of the problem to be solved. Operators of

crossover, mutation, and selection are applied to this population.

There are many ways how to apply the variation operators (i.e.,

crossover and mutation) to the population of solutions. The basic

so-called ’rand/1/bin’ mutation strategy, for instance, selects two

solutions randomly, and adds their scaled difference to the third

solution, in other words:

uðtÞ ¼ xðtÞ þ F - pðxðtÞ - xðtÞÞ; for i ¼ 1; .. . ; Np; ð1Þ

challenges in reducing the complexity of the NARM process to sim-
i r0 r1 r2

plify and reuse rule mining models to follow the Green AI.

This paper is an extension of our conference paper that was pre-

sented at the SOCO 2021 conference [17]. The primary purpose of

the conference paper was to develop a Green AI method by intro-

ducing the NARM modeling that allows reusing the NARM models

online instead of always generating these anew. A new algorithm

named onlineNARM was developed and applied to the UCI ML

Wine dataset [21]. The onlineNARM mined the association rules

of similar quality compared with the results achieved by the offline

uARMSolver. This was also better in the lower number of the

mined association rules and the lesser computational time. In the

current paper, we go a step further, and provide the following con-
tributions/extensions to our previous work:

where uðtÞ denotes the trial vector, F 2 ½0:1; 1:0] is the scaling factor

regulating the rate of modification, Np denotes the population size

and r0; r1; r2 are randomly selected values in the interval

1; . . . ; NP.

Two kinds of crossover are used in the DE algorithm: binomial

(denoted as ’bin’) and exponential (denoted as ’exp’). The binomial

crossover copies on the same position layed elements, either from

the trial or target vector, while the exponential crossover is similar

to the 1-point crossover in genetic algorithms and copies all the

elements from the trial vector until a probability of crossover is

true. The other elements are copied from the target vector. The

binomial crossover can be expressed mathematically as:

• the onlineNARM is hybridized with many mechanisms that

ðtÞ
i;j

ðtÞ
i;j
ðtÞ

randjð0; 1Þ 6 CR _ j ¼ jrand ; ð2Þ

allow it exploit the problem search space effectively,

• the offline uAMSolver generates a state database, representing

the basis on which the onlineNARM can start (raising the new

Green AI method),

• the results can be tested on four different UCI ML datasets,

• analyzing the results of the proposed method in the sense of the
time and space,

xi;j otherwise;

where CR 2 ½0:0; 1:0] controls the fraction of parameters that are

copied to the trial solution, while a condition j ¼ jrand ensures that

the trial vector differs from the original solution xðtÞ in at least

one element. The selection in the DE is usually called as ’one-to-

one’ and it can be expressed mathematically as:

• identifying the operation of the proposed method in the sense

of exploration/exploitation.In the remainder of the paper, its

structure is as follows: Section 2 discusses the background

x
ðtþ1Þ ¼

ðtÞ

i

ðtÞ

i

if f ðwðtÞÞ 6 f ðxðtÞÞ;

otherwise:

ð3Þ

information needed for understanding the subjects that follow.

The design and implementation of the onlineNARM is presented

in Section 3. The experiments and results are the subjects of

Section 4. The paper concludes with Section 5, in which the per-

In the ’one-to-one’ selection, both the trial and the target solutions

compete for surviving into the next generation, where the better

between both according to the fitness function goes to the next

generation.

I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43

35

j

j

j i pj

2.2. Numerical association rule mining

The ARM problem is defined formally as follows: Let us suppose

a set of objects O ¼ fo1; . . . ; omg and transaction database D are

given, where each transaction T is a subset of objects T # O, and

the variable m designates the number of objects. Then, an associa-

tion rule is defined as an implication:

X) Y; ð4Þ

where X c O; Y c O, in X \ Y ¼ £. The quality of the association rule

is evaluated using the following three measures [13]:

cessed before entering into the optimization. Thus, a discretization

of attributes is made in order to be ready for entering into a trans-

action database. Although more stochastic nature-inspired

population-based algorithms are planned for inclusion into the

framework, up to this point only two algorithms are available,

i.e., DE [20] and Particle Swarm Optimization [22] (PSO). Both algo-

rithms treat the ARM as an optimization problem. The visualiza-

tion step supports the so-called Explanation AI (EAI), where the

different visualization methods are applied in the sense of NARM.

It is necessary to modify the following three components of the

original DE algorithm for the uARMSolver:

 conf ðX) Y nðX [YÞ ; ð5Þ

• representation of a solution,

Þ¼
nðXÞ

suppðX) YÞ¼
nðX [YÞ

; ð6Þ
N

anteðX) YÞþ consðX) YÞ

• genotype-phenotype mapping,

• fitness function evaluation.

Let us notice that the maximum number of fitness function evalua-

tions (maxFEs) is employed as a termination condition. The initial

inclðX) YÞ¼
m

: ð7Þ population is generated randomly, while the standard mutation

strategies as proposed by Storn and Price [20] and one-to-one selec-

where conf ðX) YÞ P Cmin denotes confidence, suppðX) YÞ P Smin

support and inclðX) YÞ inclusion of the particular association rule

X) Y. The parameter N in Eq. (6) represents the number of trans-

actions in the transaction database D, and nð:Þ is the number of rep-

etitions of the particular rule X) Y within D. Additionally, Cmin
denotes minimum confidence and Smin minimum support, deter-

mining that only those association rules with confidence and sup-

port higher than Cmin and Smin are taken into consideration,

respectively.

Let us notice that functions anteðX) YÞ and consðX) YÞ in Eq.

(7) represent a set of objects belonging to either the antecedent or

consequent, respectively. Mathematically, these functions are

expressed as:

anteðX) YÞ¼ fop jpj < CpðtÞ ^ ThðAttrðtÞÞ¼ enabledg,

tion, are used in this algorithm. In the remainder of the section, the

aforementioned components are described in detail. The section

concludes with a description of the uARMSolver concept.

2.4. Representation of a solution

Solutions in a uARMSolver (i.e., association rules) are repre-

sented in the genotype space as real-valued vectors:

xi ¼ fxi;1; .. . ; xi;D; xi;Dþ1g; ð8Þ

where sequences of elements xi;j for j ¼ 1; .. . ; D encode attributes of

features, and the xi;Dþ1 is the control point separating the antecedent

from consequent part of the particular association rule. Interest-

ingly, the length of each solution is variable, and calculated accord-
ing to the following equation:

consðX) YÞ¼ fop jpj P CpðtÞ ̂ ThðAttrðtÞÞ¼ enabledg.
j i pj D ðCÞ ðCÞ ðNÞ ðRÞ

The results of the optimization algorithm are stored into an ¼ jAttr j - N þ jAttr j - N þ 1; ð9Þ

archive of mined association rules. Opposed to the traditional algo-

rithms for ARM, where each rule with support and confidence bet-

ter than Smin and Cmin is stored unconditionally, in NARM the

archive is no longer generated uniformly. Instead, only those rules

that outperform the current one according to the best fitness are

stored into the archive. In this way, the size of the archive is

reduced crucially.

Interestingly, each numerical attribute in NARM is determined

by an interval of feasible values limited by its lower and upper

bounds. The broader the interval, the more association rules can

be mined. The narrower the interval, the more specific relations

are discovered between attributes. Introducing intervals of feasible

values has two effects on the optimization: To change the existing

discrete search space to continuous, and to adapt these continuous

intervals to suit the problem of interest better.

2.3. uARMSolver

The universal framework for ARM [18] (i.e., the uARMSolver) is

used as a testbed for evaluating the proposed online NARM. It was

developed in the C++ programming language and, therefore, its

main advantages are: speed, modular design, and open-source cod-

ing. This miner covers all three steps needed for solving the NARM

problems, i.e., preprocessing, optimization, and visualization. Due

to its simplicity and efficiency, this is included as a software pack-

age suitable for running on most current Linux distributions (e.g.,

Fedora, RedHat, etc.).

The uARMSolver is an appropriate tool to deal with datasets in

the UCI ML format [21]. These input datasets need to be prepro-

where jAttrðCÞj and jAttrðRÞj denote the size, while NðCÞ and NðRÞ the

number of either categorical or numerical attributes, respectively.

Obviously, one is added in the equation to consider the size of the

additional element, i.e., the control point.

2.5. Genotype-phenotype mapping

The aim of the genotype-phenotype mapping is to decode the

solution in the genotype space to its counterpart in the phenotype

space. The solution in the genotype space is of variable size and

encodes the attributes of two types: categorical and numerical.

Each type is decoded from a fixed sequence of real values. More

specifically, the categorical attributes are encoded as triples:

AttrðCÞ ¼ hpj; attrj; Thji;

where

pj -is the order number in the permutation of attributes;

attrj -is the value of the categorical attribute;

Thj -is the threshold determining the presence or absence of

the attribute in the rule:

On the other hand, the numerical attributes are encoded in the

genotype as quadruples:

AttrðRÞ ¼ hpj; Lbj; Ubj; Thji;

where

I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43

36

10

pj -is the order number in the permutation of attributes;

Lbj; Ubj -are the lower and upper bounds of the numerical

attribute;

Thj -is the threshold determining the presence or absence

of the attribute in the rule:

Straightforward mathematical equations are employed for decoding

the particular values of the phenotype [18]. This process is illus-

trated graphically in Fig. 1, from which it can be seen that three

integer vectors are incorporated in the decoding process: (1) a per-

mutation of attributes p, (2) a position pos, and (3) an attribute

type. The permutation vector is obtained after sorting the elements

pj for j ¼ 1; . . . ; n of the corresponding attribute tuples, the position

vector denotes the starting position of the particular attribute in

vector xi, and the type vector highlights the type of each attribute

(i.e., categorical ’C’ or numerical ’R’). This vector is actually used

for determining the size of the particular attribute.

2.6. Fitness function evaluation

After decoding an association rule X) Y from a genotype xi, the

quality of the solution needs to be evaluated in the phenotype

space. The quality is evaluated using the fitness function expressed

as follows:

Fig. 2. Offline ARM concept.

3. Online NARM solver

The uARMSolver using a DE algorithm serves as a tool allowing

a detailed exploration of the NARM search space. The detailed

exploration is possible because of an extended termination condi-

tion allowing a long-term stochastic searching, and the nature of

the original DE algorithm guaranteeing that the DE search process

does not trap into a local optima too quickly. As a result, the mined

rules expose the huge qualities in the sense of the fitness function.

Contrarily, the motivation behind developing the online NARM

algorithm is to mine the high quality solutions in the short-term.

This demands that the online NARM needs to be designed very

carefully by incorporating various components allowing the issue.

The incorporated components for addressing this issue are as

follows:

• heuristic initialization,

• adaptation of the DE control parameters,

• mutation strategy,

f ðx
ðtÞ a - suppðX) YÞþ b - conf ðX) YÞþ c - inclðX) YÞ ; ð Þ • non-dominated solution selection,

i Þ¼ a þ b þ c • local search improvement heuristic,

• termination condition.

where a; b, and c denote weights, suppðX) YÞ; conf ðX) YÞ, and

inclusion inclðX) YÞ represent the support, the confidence, and

the inclusion of the observed association rule, respectively.

2.7. The offline concept of the uARMSolver

The uARMSolver processes transactions in the transaction data-

base offline (Fig. 2). This means that all transactions are processed

sequentially, while the results of this processing are the mined

association rules. Let us notice that only those rules that improve

the value of fitness function are stored into an archive of associa-

tion rules, quite the contrary to the traditional algorithms for

ARM, like Apriori [13], where the number of stored association

rules is regulated by the thresholds Smin and Cmin.

Obviously, if more transactions emerge for importing to the

transaction database, the new association rules need to be mined.

In this case, the ARM process starts anew, wherein the consump-

tion of computational resources (e.g., space and time) increase

drastically. Therefore, the online NARM is proposed to continue

the mining process with reusing the model discovered by the

uARMSolver.

Fig. 1. Genotype-phenotype mapping.

In the remainder of the section, the aforementioned components

are illustrated in detail. The section terminates with a description

of the concept of the online NARM solver.

3.1. Heuristic initialization

Initialization of a population can have a crucial impact on the

results of the optimization for many types of problems [23]. This

component is implemented in the onlineNARM twofold: heuristic

and random. The heuristic initialization bases on knowledge

explored by the uARMSolver. The explored knowledge, however,

is accumulated within the population. Therefore, the original

uARMSolver is modified, such that all the population individuals

are saved into the so-called state population file, which can be

restored later by the onlineNARM in the sense of initializing the

population.

The heuristic population acts as follows: The individuals from

the state population are sorted first, and then inserted at random

positions in the initial population. The number of inserted state

individuals is controlled by a parameter ratio 2 ½0:0; 1:0]. This

means, when the ratio ¼ 0:0, all the individuals from the state pop-

ulation are copied into the initial population, and vice versa when

ratio ¼ 1:0, the initial population is initialized randomly. In the

case where the initial population size is less than the state one,

the remainder of the places in the initial population are initialized

randomly.

3.2. Adaptation of the DE control parameters

The Success History based Adaptive DE (SHADE) developed by

Tanabe and Fukubaga in 2013 [24] is one of the more successful

variants of the DE algorithm, whose main advantage lays in adap-

tation of the DE control parameters F and CR. The adaptation has a

crucial impact on the results of optimization in the sense of the

I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43

37

CR;k

F;k

X
wk - S

X

X

k

S

i

Mðtþ1Þ ¼ WL F F i i

WAð CR Þ¼ k - CR;k ; ð Þ

pbest i j j i

time and the quality. Therefore, this mechanism is included into pi ¼ rand½pmin; 0:2]; ð18Þ
the onlineNARM as well.

Historical memories MCR and MF , with a size limited by param- where p

min is set such that the pbest individual can in the worst case

eter H, are used by the adapting mechanism. Initially, the elements

of the history memory MCR and MF are initialized to 0.5, and mod-

be selected between two vectors, i.e., pmin ¼ 2=NP. However, the

archive in the online NARM presents a state population that is ini-
i i tialized with the best population borrowed from the uARMSolver

ified according to the following equation [24]:

CRi ¼ NðMCR;ri ; 0:1Þ;
and updated with the best individuals mined during the evolution-

ary search process.

Fi ¼ CðMF

;ri

ð11Þ
; 0:1Þ;

where Nðl; rÞ denotes the randomly selected value drawn from

the Gaussian distribution with mean l and standard deviation

r; Cðl; rÞ is the randomly selected value drawn from the Cauchy

distribution with mean l and standard deviation r, while ri is the

randomly selected value drawn from the uniform distribution in

the interval ½1; H].

The historical memories MCR and MF are modified according to

the number of successfully changed individuals that are updated

during the particular generation, and recorded in the so-called suc-

cess history SCR and SF . The contents of these memories are modi-

fied as follows:

3.4. Non-dominated solution selection

The onlineNARM uses a concept of domination [25] by selecting

the best solutions. As it can be seen in Eq. (10), the fitness function

is expressed as a linear combination of three objectives: a support,

confidence and inclusion. These objectives are weighted by the

coefficients a; b, and c, while the sum is maximized as a whole.

However, all three objectives are conflicting to each other. This

means that the multi-objective optimization approach [25] should

be used in this case. On the other hand, we are interested in the

maximum value of the fitness function. Therefore, in our study,
we left the fitness function the same as in the uARMSolver (thus

Mðtþ1Þ ¼

(
meanWAðSCRÞ; if SCR – 0;

ð12Þ comparison was kept between two miners), but changed the selec-

CR;k MðtÞ ; otherwise; tion operation in DE (Eq. (3)). Actually, the selection operation in
the original DE based on relation f ðwðtÞÞ 6 f ðxðtÞÞ is changed with

i i

F;k

mean ðS Þ; if S – 0;

MðtÞ ; otherwise;

the domination relation f ðwðtÞÞ / f ðxðtÞÞ, where the sign / denotes

the domination relation. According to the domination relation,
the trial solution wðtÞ is no worse than xðtÞ in all objectives, and is

i i

where functions meanWA and meanWL are expressed as:

jS j

strictly better in at least one objective [25]. This dominance is
expressed mathematically as wðtÞ xðtÞ (is better than).

mean S
XC R

w S 14
i i

w ¼
 Dfk ; ð15Þ
jSCRj

Df k

k¼1

and Df k ¼ jf ðuðtÞÞ- f ðxðtÞÞj. The weighted Lehmer mean meanWLðSF Þ
in Eq. (13) is expressed as follows:

jSF j
2

F;k

meanWLðSF Þ¼ k¼1 : ð16Þ
j F j

wk - SF;k

k¼1

Finally, the parameter k represents a position in the memory where

an update is performed. This position changes in each generation,

starting from the value k ¼ 1 to k ¼ H, where the parameter is reset

to its initial value.

3.3. Mutation strategy

Also, an employed mutation strategy ’current-to-pbest/1/bin’ is

borrowed from the SHADE algorithm. The main advantage of this

strategy is the usage of an archive of best solutions found during

the evolutionary process that collaborate actively by improving

the current best solution.The mutation strategy is expressed as

follows:

Evolutionary Algorithms (EAs) can be applied to a broad spec-

trum of problems, where little domain specific knowledge has

already been explored. However, their performance can be

improved drastically when the algorithm is hybridized with this

knowledge. Practically, the domain specific knowledge can hybri-

dize all components of the EAs. In our study, the proposed online-

NARM is hybridized with the local search heuristics, besides the

heuristic initialization. According to Moscato [26], these kinds of

algorithms are known under the name Memetic Algorithms (MA).

Three types of local search heuristics are developed for the onli-

neNARM, as follows:

• swap,

• move,

• amend.

All the aforementioned local search heuristics act on the genotype

level, while their effects follow the so-called Lamarckian theory

[27], according to which all changes in a parent organism acquired

during its lifetime are passed to its offspring. The swap local search

heuristic takes one attribute in antecedent and one in consequent

randomly, and changes their corresponding elements between each

other, except the permutation one. The permutation value ensures

that the ordering does not change, and changes are made on the val-

ues of swapped attributes only. Let us mention that the different
sizes of attributes (e.g., swapping between categorical and numeri-

vðtÞ ¼ xðtÞ þ FðtÞ - ðxðtÞ - xðtÞÞþ FðtÞ - ðxðtÞ - xðtÞÞ; ð17Þ
i i i pbest i i r0 r1 cal attributes) also need to be taken into consideration by this oper-

ator. The move local search acts by selecting the i-th attribute in the

where FðtÞ denotes the scaling factor corresponding to the i-th vec-

tor, xðtÞ is a randomly selected value drawn from the top NP x pi
antecedent and k-th in the consequent randomly and assigning the

permutation value either as p ! p or vice versa (i.e., p ! p),

members in generation t, and r1 is a randomly selected individual

from the best ratio of the state population determined by the

parameter pi . Thus, pi is calculated as follows:

depending on the direction of the move operation. Let us emphasize

that the sort operator in genotype-phenotype mapping moves the i-

th attribute from antecedent to consequent and, oppositely, the j-th

k¼1 3.5. Local search improvement heuristics

ð13Þ

(

I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43

38

8
< x

i;pos½j]þk

i;pos½j]þk

>>:

f

attribute from consequent to antecedent. The last local search

heuristic affects the values of the categorical attributes according

to the following equation:

definite number of generations (i.e., convergence window CW),

where no improvements are detected anymore.

ðCÞ

i;pos½j]þ1

ðCÞ

i;pos½j]þ1

ðCÞ

i;pos½j]þ1
; 0:05Þ; ð19Þ

3.7. The concept of the onlineNARM solver

while the numerical and real-valued values as follows:
The original transaction database is divided into: a broker, and

delta (Fig. 3). The former represents the original transaction data-

ðRÞ

i;pos½j]þ1
ðRÞ

ðRÞ

i;pos½j]þ1
ðRÞ

ðRÞ

i;pos½j]þ1
ðRÞ

; 0:05Þ; if Uð0:0; 1:0Þ < 0:5
base in time t0 that is optimized initially using the offline uARM-

Solver. Two additional results are produced after the

xi;pos½j]þ2 ¼ xi;pos½j]þ2 þ sign - Rðxi;pos½j]þ2; 0:05Þ; otherwise;

ð20Þ

where a function sign returns either -1 if Uð0:0; 1:0Þ < 0:5Þ or + 1

otherwise, and Nðxð:Þ ; 0:05Þ for k ¼ ð1j2Þ denotes the random

number drawn from the Gaussian distribution with mean xð:Þ

and standard deviation 0.05.

The local search heuristics are controlled using the parameter

LS ratio. When the local search heuristics are launched, they try

to improve the target i-th vector in the population. These are active

until an improvements is detected. In each local search phase, the

neighborhood of the target vector is generated according to the fol-

lowing equation:

8

> I:

f
swap if Uð0:0; 1:0Þ < :5

optimization, i.e., the archive of association rules (also the model),

and the state representing a population of solutions obtained after

the last exploring of the best solution.

In time t1, new transactions have arisen that are collected into

the delta transaction database. The onlineNarm miner merges the

broker and delta databases into the original transaction database

in time t2. Besides the original database, the online miner gener-

ates a new archive of association rules model’ and a new state’ pop-

ulation using the existing model and state. Thus, the onlineNARM

solver does not optimize the transaction database anew, but con-

tinues the optimization in the state where the last miner ended.

In this way, this consumes less computer resources, especially

time.

Last but not least, the results of the onlineNARM can enter into

the next cycle of the optimization process, where the original
transaction database becomes the broker database, the model’

NeighðiÞ¼
<

 move otherwise ð21Þ changes to the model, and the state’ to the state in the time t0 of

II:
amend if Uð0:0; 1:0Þ < :9

n=a otherwise:

As can be seen from the aforementioned equation, either swap or

move local search heuristics are selected with equal probability in

the first phase. Then, the amend local search heuristic is applied,

with the probability 0.9 on the changed hybrid vector.

3.6. Termination condition

Selecting the proper termination condition in an onlineNARM

has a crucial impact on its performance. The maximum number

of fitness function evaluations (maxFEs) remains the main condi-

tion for terminating the algorithm. However, too high a number

of this parameter increases the time complexity, while a too low

value of this parameter can terminate it too quickly, and, conse-

quently, the better solution can be lost. Therefore, a balance needs

to be found between the too fast convergence and too long explo-

ration of the search space.

In this algorithm, also the second termination condition is

applied, according to which the algorithm is terminated after the

the next cycle. This means that the model is not reused only once,

but can be reused more times.

4. Experiments and results

The goal of our experimental work was to show that the results

of the uARMSolver, using the exhaustive evolutionary search, could

be reached, or even improved with the results obtained by the onli-

neNARM, which employs the described mechanisms, allowing it to

converge in significantly less time. As a result, the energy con-

sumption is reduced drastically by decreasing the computational

complexity, and, thus, justifies the foundations of the green AI.

Two types of the DE algorithm were used in the comparative

study: (1) the original offline uARMSolver, and (2) the hybrid onli-

neNARM. The former serves for the initial exhaustive search space

exploration, while the latter for the subsequent fast search space

exploitation. Thus, the onlineNARM algorithm was hybridized

with: heuristic initialization, adaptation of the DE control parame-

ters, and using the ’current-to-pbest/1/bin’ mutation strategy, the

non-dominated selection and the local search heuristics. The algo-

rithms used the parameters as illustrated in Table 1 during the

Fig. 3. Online ARM.

x ¼ x þ sign - Nðx

¼ x þ sign - Rðx

:

I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43

39

Table 1

Parameter setting of the DE algorithms in the tests.

Nr. Parameter Abbr. uARMSolver OnlineNARM

1 Population size NP 100 100

2 Fitness func. maxFEs 1,000,000 1,000

3

evaluations

Convergence window

CW

200

2

4 Scale factor F 0.5 adaptive

5 Crossover rate CR 0.9 adaptive

8 Mutation strategy DE ‘rand/1/bin’ ‘cur.-to-pbest/1/

bin’

7 Heuristic initialization ratio n/a 0.5

8 Local search probability LS ratio n/a 0.1

runs. Each algorithm was run 30 times, and the best solutions

according to the fitness function were observed in the analysis.

The population size presents a standard value as proposed by

the DE community. The termination condition maxFEs highlights

the particular algorithm’s exploration/exploitation characteristics:

While the offline miner emphasizes the exploration capability, the

onlineNARM is more exploitative. Actually, these values represent

a fair balance between too exhaustive exploration and too fast con-

vergence to the local optima, as found during the extensive exper-

iments. The DE control parameters F and CR were set either to the

fixed values in the offline uARMSolver or to be adaptive in the onli-

neNARM. The original ’rand/1/bin’ mutation strategy was

employed in the first and the lSHADE ’current-to-pbest/1/bin’ in

the second case. The last two parameters (i.e., ratio and LS_ratio)

are applied in the onlineNARM only.

Both algorithms were applied for solving the transaction data-

bases from the UCI ML datasets [21]. As can be seen from Table 2,

four datasets were selected, with different numbers of transac-

tions, numbers of attributes, and their corresponding types. The

purpose of the selection was to capture the various datasets

according to these various characteristics.

In order to simulate a trend of incoming transactions, a reversi-

ble process was taken into consideration, which divides the origi-

nal database into two partial databases according to the amount

of transactions expressed by the percentage of the original ones.

If, for instance, 10 % is selected, the higher 10 % of the transactions

in the original database were attached to the broker, and the

remainding 90 % to the delta database.

To assess the results obtained by the uARMSolver on the final

databases with the results of the onlineNARM on the partial broker

database substituted with the delta ones, a cosine similarity

between two classifiers u and v (i.e., the vectors of the results) is

used that is expressed by the Schwartz-Cauchy inequality [28],

as follows:

cos / ¼
 ju - vj

; ð22Þ

jjujj - jjvjj

where the term ju - vj denotes the inner product of two vectors, and

the term jj:jj refers to the absolute value of the vector.

Table 2

Characteristics of the UCI ML datasets.

Nr. Dataset #tran. #attr. Type

1 Abalone 4,177 9 Mixed

2 Page blocks 5473 11 Numerical

2 Mushroom 8,125 22 Categorical

3 Adult 32,561 14 Mixed

The quality of the mined association rules were estimated

according to Eq. (10) by both algorithms, thus, making the compar-

ison possible. However, the better between trial and target solu-

tions in one-to-one selection in the offline uARMSolver is

selected according to the fitness function, while the non-

dominated selection decides, which of the two solutions will sur-

vive in the onlineNARM.

4.1. Hardware configuration

All runs were made on a personal computer IBM Lenovo using

the following configurations:

• Processor - AMD Ryzen 7–1700 3.90 GHz x 8,

• RAM - 16 GB,

• Operating system - Linux Ubuntu 22.04 Jammy Jellyfish (x86-
64)19,

• Cinnamon Version - 5.2.7.

All versions of the tested algorithms were implemented within the

Eclipse CDT Framework Version 2022–03.

4.2. Results

The following four reports are provided to justify the hypothesis

set at the beginning of the section:

• analysis of the detailed results,

• quality analysis of the aggregate results,

• time complexity analysis of the aggregate results,

• analysis of the convergence speed.

In the remainder of the section the aforementioned tests are dis-

cussed in detail.

4.2.1. Analysis of the detailed results

In this experiment, we compared the performance of the online-

NARM by various partial broker databases with the results as

obtained by the uARMSolver on the original transaction database.

The partial broker databases were observed at milestones deter-

mined by 10 %, 25 %, 50 %, 75 %, and 90 % of the original database

that are substituted with the corresponding delta databases to the

original ones. The results of the offline uARMSolver, representing

100 % of the original database, and this one, were added to the

study as well. In summary, six instances of the problem were con-

sidered. The goal of the onlineNARM was to get as near to the

results of the uARMSolver as possible disregarding which broker

database it was started from.

The detailed results obtained by the ARM on the Adult database

are presented in Table 3. The table is arranged into columns repre-

senting the particular instances and rows representing various

variables. The variables refer to the performance indicators and

highlights the behaviour of the algorithm from different points of

view. The meanings of the variables are presented in Table 4.

Because the advanced analysis of the results according the quality

and the time are performed in the remainder of the section, the

focus, here, is on the detailed analysis of the performance indicator

Rules. Indeed, the number of Rules increases from the value 611

achieved by the uARMSolver to the value 731 by the onlineNARM

except its instance starting with 25 % of the transactions of the

original database, where 600 association rules are mined only.

4.2.2. Quality analysis of the aggregate results

The goal of this experiment was to compare the results of the

onlineNARM obtained by optimization of all four observed transac-

tion databases according to a quality of solutions, and to show that

I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43

Table 3

40

Detailed results obtained by the Adult mining.

Variable onlineNARM uARMSolver

 10 % 25 % 50 % 75 % 90 % 100 %

Broker DB 3,257 8,141 16,280 24,420 29,304 32,561

Delta DB 29,304 24,420 16,281 8,141 3,257 0

Rules 713 600 703 662 731 611

Best fitness 0.799120 0.799498 0.799652 0.799693 0.799693 0.799693

At FEs 318 181 170 96 65 845

At time 149.62 93.17 104.33 71.76 73.59 479.60

LS calls 239 219 217 251 259 n/a

LS success 113 81 66 87 104 n/a

LR rate 0.4728 0.3699 0.3041 0.3466 0.4015 n/a

Total time 355.54 340.35 371.64 291.17 352.07 5,460.32

Table 4

Meaning of the variables.

Variable Meaning

Broker DB the size of the broker database per a particular instance

Delta DB the size of the delta database per a particular instance

Rules the number of rules mined

Best fitness the best fitness function value

At FEs the effective fitness evaluations needed for achieving the

best fitness

At time the effective time needed for achieving the best fitness

LS statistics the number of calls, successful calls, and the rate of the

successful calls

Total time the total time needed for fulfilling the prescribed fitness

function evaluations

the onlineNARM can achieve results near to the optimal (i.e., as

achieved by the uARMSolver). In line with this, the detailed results

obtained by both solvers in the first experiment are aggregated and

examined closely.

The mentioned results according to the quality are presented in

Table 5, from which it can be seen that the onlineNARM achieved

results equal to the optimal at the higher instances of the broker

databases (i.e., P 50 ~ %), while these are near to the optimal at

the lower instances.

Two statistical test were conducted to show that the results

achieved by the onlineNARM are not statistically significantly dif-

ferent from the results of the uARMSolver: (1) a 2-tailed pairwise t-

test for significance level a ¼ 0:01, and (2) a cosine similarity test.

The results of these statistical tests are illustrated in Table 6. As can

be seen from the table, the results of the onlineNARM are not sig-

nificantly different from the optimal results according to the 2-

tailed parwise t-test for the significance level 0.01. Also the cosine

similarity test indicates the irrelevant differences in the quality of

mined association rules between both miners.

4.2.3. Time complexity analysis of the aggregate results

The analysis of time complexity addresses the results obtained

by both miners according to the total time, and it is divided into

two parts: In the first part, the comparison between the online-

Table 6

Results of the statistical tests.

Dataset Parwise t-test Cosine similarity

 p-value p < 0:01 cos / SC

Abalone 0.145997 No 0.999998 1

Page blocks 0.058864 No 0.999971 1

Mushroom 0.149438 No 0.999961 1

Adult 0.175609 No 1.000000 1

NARM by mining the association rules on various instances of

the broker databases is conducted without considering the initial-

ization phase, while, in the second part, this phase is also taken

into consideration.

The results of the first part are presented in Table 7, from which

it can be seen that the onlineNARM spends from 4.27 % by handling

the Page blocks transaction database to 6.32 % for the Adult data-

base of the total time spent by the uARMSolver, on average.

The situation is changed slightly, when the initialization phase,

performed with the uARMSolverI (i.e., uARMSolver on the particu-

lar broker database) on the particular broker database, is taken into

account (Table 8). The results in the table show that the total time

of the initialization phase consumed by the uARMSolverI cannot be

neglected. Indeed, the consumption of time is expanded from

36.47 % by mining the rules in the Mushroom database to 46.17

% by mining in the Abalone database, in average.

Table 7

Results of the UCI ML dataset mining according to the total processing time without

considering the initialization phase.

Dataset onlineNARM uARMSolver

 10 % 25 % 50 % 75 % 90 % 100 %

Abalone 50.70 45.77 51.44 52.81 49.43 1047.63

Page blocks 56.13 61.86 74.10 73.55 69.47 1553.15

Mushroom 37.65 35.62 36.29 30.71 34.61 654.49

Adult 355.54 340.35 371.64 291.18 352.07 5,460.32

Average 125.00 120.90 133.37 112.06 126.39 2,178.89

Table 5

Results of the UCI ML dataset mining according to the best fitness.

Dataset onlineNARM uARMSo.

 10 % 25 % 50 % 75 % 90 % 100 %

Abalone 0.958733 0.959691 0.962883 0.962883 0.962883 0.962883

Page blocks 0.893438 0.902153 0.905320 0.911594 0.912446 0.912629

Mushroom 0.703177 0.703177 0.692967 0.688764 0.703177 0.703177

Adult 0.799120 0.799498 0.799652 0.799693 0.799693 0.799693

Average 0.838617 0.841129 0.840205 0.840733 0.844549 0.844595

41

Table 8

Results of the UCI ML dataset mining according to the total processing time with also considering the initialization phase.

Dataset uARMSolverI + onlineNARM uARMSolver

 10 % 25 % 50 % 75 % 90 % 100 %

Abalone 138.07 260.074 687.89 689.11 1,044.71 1,047.63

Page blocks 191.60 480.97 877.85 1,324.33 1,635.76 1,553.15

Mushroom 103.56 172.49 441.42 554.91 806.43 654.49

Adult 910.76 1,775.24 3,369.75 4,608.17 5,957.40 5,460.32

Average 335.99 672.19 1,344.23 1,794.13 2,361.08 2,178.89

However, when particular instances of the broker databases are

taken into consideration, the following assertion holds: The lower

the instance, the higher the total time savings. Obviously, the

opposite also holds: The higher the instance, the smaller the sav-

ings. For instance, the savings amount to even more than 85 %

for the instance containing the 10 % of transactions from the orig-

inal transaction database, and 0 % saving for the instance contain-

ing the 90 % of transactions of the original transaction database.

4.2.4. Analysis of the convergence speed

This experiment was devoted to indicating how effective an

evolutionary search process of the particular miners is. In line with

this, the number of fitness function evaluations (FEs) was recorded,

when the best fitness was detected. This number has a crucial

influence on setting the convergence window CW that represents

the second termination condition used in both miners.

The results of the experiment are illustrated in Table 9. From

the table, it can be seen that the instances of broker databases con-

taining the smaller number of transactions in the broker database

demand more fitness functions evaluations to converge. When

comparing the FEs achieved by the onlineNARM with those

obtained by the offline uARMSolver, it can be concluded that the

last one needed more evaluations to converge. This fact can be

ascribed to the fact that the offline uARMSolver does not use any

hybrid methods for improving its evolutionary search process.

Interestingly, the convergence window CW terminates the exe-

cution of the search process in the uARMSolver, while the online-

NARM is more sensitive on the maxFEs termination condition.

Although the convergence window was set extremely low in the

onlineNARM, the diversity of population ensured discovering the

new promising solutions, and, thus, prevented it from terminating

prematurely.

4.3. Discussion

The time complexity of the stochastic nature-inspired

population-based algorithms, like EAs, is usually limited by using

the parameter maxFEs. Here, the main issue is how to determine

this parameter such that the corresponding EA is already able to

discover the new best solutions, and to prevent the evolutionary

search process from getting stuck in the local optima. There, we

are confronted with the problem of exploration/exploitation [29].

This means too much selection strength, too fast loss of the popu-

lation diversity. On the other hand, although the population diver-

Table 9

Results of the UCI ML dataset mining according to the FEs.

Dataset onlineNARM uARMSolver

sity is a required condition for discovering the best solutions, it

does not ensure that these can really be discovered. Due to a lack

of theoretical studies in the domain, the reasonable setting of these

values was determined experimentally. As a result, the proposed

values, as found in our study, could be a good starting point for

other potential researches.

In order to decrease the value of the parameter maxFEs, gener-

ally, the proposed method applies the offline uARMSolver for an

exhaustive evolutionary search at the beginning that consumes a

reasonable number of the fitness function evaluations. The reason-

able number was determined by the second termination condition

in the form of the convergence window CW experimentally, such

that this was suitable for all the problems under consideration in

general. For instance, the uARMSolver needs almost 100 genera-

tions (i.e., FEs ¼ 9; 236 or 9; 236=100 � 100 generations) to obtain

the best solution by mining the rules within the Mushroom data-

base, although the same algorithm found the optimal solutions

earlier for the other databases (Table 9). Therefore, the selection

of the parameter CW ¼ 200 seems reasonable in summary.

The onlineNARM is applied with reusing the model built by

uARMSolver, whose time complexity can be controlled with the

lower value of maxFEs ¼ 1; 000 and CW ¼ 2 due to the quicker con-

vergence of the online algorithm. The results of this algorithm

according to the total time are promising, especially for the

instances with a lower number of transactions in the broker data-

bases. For instance, the quality of the results by the onlineNARM

are only 0:7 ~ % worse than by the uARMSolver in average

(Table 5), although these were obtained by the former algorithm

in even 84:24 ~ % less time in average (Table 8), when the smallest

size of the broker database (i.e., 10 ~ %) is observed. Finally, the

question should arise, how to define the value of the parameter

maxFEs more precisely. Obviously, the answer to this question

might be found in an analysis of the exploration/exploitation

behavior of the onlineNARM algorithm on different problems.

Furthermore, the faster convergence of this algorithm is

ensured by additional mechanisms, like: heuristic initialization,

adaptation of the F and CR parameters, mutation strategy

’current-to-pbest/1/bin’ using an archive of the previous best solu-

tions, non-dominated selection, and local search heuristics. Heuris-

tic initialization, for instance, depends on the setting of the

parameter ratio that regulates if the initial solutions are generated

heuristically or randomly. When the majority of the initial solu-

tions are generated heuristically, the final result is usually a fast

convergence to the local optima, while the majority of the random

initial solutions cause a slow convergence. The evidence of the fas-

ter convergence is reflected in Table 9, where the onlineNARM

used 87:59% of fitness function evaluations less than the uARMSol-

ver (Table 9) in average.

Indeed, some drawbacks of the method have been discovered

during the research study. These can be summarized in two facts

as follows:

• identifying the distribution of transaction classes in the broker
database with the original one,

• improper handling with the big data.

 10 % 25 % 50 % 75 % 90 % 100 %

Abalone 561 194 100 100 171 288

Page blocks 228 196 321 183 98 718

Mushroom 268 530 97 227 54 9,236

Adult 318 181 170 96 65 845

Average 343.75 275.25 172.00 151.50 97.00 2,771.75

42

Fig. 4. The Figure presents a comparison of distributions of transaction classes

between the original and broker datasets obtained from the Mushroom UCI ML

dataset by dividing percentage of 10%. As can be seen from the Figure, there are 29

different classes into which transactions can be classified. In the original dataset,

these classes are normally distributed, while the distribution is more scattered in

the case of the broker dataset.

The present study assumes that the transactions in UCI ML datasets

are aggregated in some history ordering. Therefore, the broker data-

sets are generated by dividing the original dataset into two parts

according to the dividing percentage and regardless of the classes

of the transactions being subjects of the dividing. This dividing,

actually, does not consider that the distribution of the transactions

in a broker database needs to be equal with those in the original

(Fig. 4).

This distribution is not so important in datasets of variable size,

where the transactions are added to the transaction database

online. However, simulating the online process, like in our case,

can prevent the onlineNARM from achieving the same results as

the uARMSolver on each instance of the problem, especially, due

to the different distribution of transaction classes.

As discovered during the experimental work, the uARMSolver

could have a problem with handling big data, due to reading the

whole data from the transaction database into a computer mem-

ory. Obviously, the problem could be solved easily by paging parts

of the real from the virtual memory, where only parts of the whole

database are presented in the computer memory at once. As a mat-

ter of fact, we did not observe this kind of problem, because we did

not deal with the raw big data, in our study.

However, only one cycle of the onlineNARM was tested during

our preliminary tests. Obviously, when the onlineNARM with reus-

ing the model would repeat over more cycles, the savings in time

(and indirectly in energy consumption) would be increased

drastically.

5. Conclusion

The ARM is a hard ML problem in the sense of time and space

complexity and consequently demands a lot of electrical energy

for solving on digital computers. Therefore, it is classified in the

class of Red AI, that represents a set of algorithms consuming too

much electrical energy, and are indirectly unfriendly for the envi-

ronment. This paper proposes a combination of the offline uARM-

Solver and onlineNARM, capable of drastic decreasing of the time

complexity, and, consequently, also the electrical consumption

by solving the problem. This method could be a potential candidate

for classification in the Green AI class.

A lot of directions exists for improving the method: At first, the

more complex transaction databases could be taken into consider-

ation (e.g., the Hadoop environment for big data analytics). Next,

the onlineNARM could be included into the uARMSolver frame-

work as an independent process that could use the uARMSolver

for initialization. Furthermore, the onlineNARM could be applied

to data arising in data centers and cloud computing platforms,

where huge electricity consumption takes place. Finally, additional

improvements could be conducted, in order to reveal the processes

of exploration and exploitation in more detail. The result of this

study could help us to determine the termination condition in

the onlineNARM more precisely.

Data availability

Data will be made available on request.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Acknowledgements

Iztok Fister Jr. is grateful the Slovenian Research Agency for the

financial support under Research Core Funding No. P2-0057. Iztok

Fister thanks the Slovenian Research Agency for the financial sup-

port under Research Core Funding No. P2-0042 - Digital twin.

Akemi Galvez and Andres Iglesias thank the financial support of

the European project PDE-GIR of the European Union’s Horizon

2020 research & innovation program (Marie Sklodowska-Curie

action, grant agreement No 778035), and of the Spanish govern-

ment project #PID2021-127073OB-I00 of the MCIN/AEI/10.13039

/501100011033/FEDER, EU.

References

[1] J. Patten, P.T. Keiser, D. Gysi, G. Menichetti, H. Mori, C.J. Donahue, X. Gan, I. do

Valle, K. Geoghegan-Barek, M. Anantpadma, et al., Identification of druggable

host targets needed for sars-cov-2 infection by combined pharmacological

evaluation and cellular network directed prioritization both in vitro and

in vivo.

[2] W. Leal Filho, T. Wall, S.A.R. Mucova, G.J. Nagy, A.-L. Balogun, J.M. Luetz, A.W.

Ng, M. Kovaleva, F.M.S. Azam, F. Alves, et al., Deploying artificial intelligence

for climate change adaptation, Technological Forecasting and Social Change

180 (2022).

[3] J. Cowls, A. Tsamados, M. Taddeo, L. Floridi, The ai gambit: leveraging artificial

intelligence to combat climate change–opportunities, challenges, and

recommendations, Ai & Society (2021) 1–25.

[4] S.-M. Cheong, K. Sankaran, H. Bastani, Artificial intelligence for climate change

adaptation, Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery (2022) e1459.

[5] D. Rolnick, P.L. Donti, L.H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A.S.

Ross, N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown, et al., Tackling

climate change with machine learning, ACM Computing Surveys (CSUR) 55 (2)

(2022) 1–96.

[6] A. Nordgren, Artificial intelligence and climate change: ethical issues, Journal

of Information, Communication and Ethics in Society.

[7] U. of Melbourne, A ’carbon law’ offers pathway to halve emissions every

decade, accessed August 3, 2022 (2022). www.sciencedaily.com/releases/

2017/03/170323141338.htm.

[8] B. Ekholm, J. Rockström, Digital technology can cut global emissions by 15 %.

Here’s how, accessed August 3, 2022 (2022). https://www.weforum.org/

agenda/2019/01/why-digitalization-is-the-key-to-exponential-climate-

action/.

[9] R. Schwartz, J. Dodge, N.A. Smith, O. Etzioni, Green ai, arXiv preprint

arXiv:1907.10597.

[10] E. Strubell, A. Ganesh, A. McCallum, Energy and policy considerations for deep

learning in nlp, arXiv preprint arXiv:1906.02243.

[11] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert:

smaller, faster, cheaper and lighter, arXiv preprint arXiv:1910.01108.

[12] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz, E. Vianello, E.

Beigne, Spiking neural networks hardware implementations and challenges: A

survey, ACM Journal on Emerging Technologies in Computing Systems (JETC)

15 (2) (2019) 1–35.

[13] R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large

databases, Morgan Kaufmann Publishers Inc., 1994, pp. 487–499.

http://refhub.elsevier.com/S0925-2312(22)01499-0/h0010
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0010
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0010
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0010
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0015
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0015
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0015
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0020
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0020
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0020
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0025
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0025
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0025
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0025
http://www.sciencedaily.com/releases/
http://www.weforum.org/
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0060
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0060
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0060
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0060
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0065
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0065
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0065

43

[14] M. Kaur, S. Kang, Market basket analysis: Identify the changing trends of

market data using association rule mining, Procedia computer science 85

(2016) 78–85.

[15] E. Varol Altay, B. Alatas, Performance analysis of multi-objective artificial

intelligence optimization algorithms in numerical association rule mining,

Journal of Ambient Intelligence and Humanized, Computing 11 (8) (2020) 3449–

3469.

[16] I.F. Jr, I. Fister, A brief overview of swarm intelligence-based algorithms for

numerical association rule mining, arXiv preprint arXiv:2010.15524.

[17] I. Fister Jr., A. Iglesias, A. Galvez, I. Fister, Toward reusing the numerical

association rule mining models, in: International Workshop on Soft

Computing Models in Industrial and Environmental Applications, Springer,

2021, pp. 198–206.

[18] I. Fister, I.F. Jr., uarmsolver: A framework for association rule mining, CoRR abs/

2010.10884. https://arxiv.org/abs/2010.10884.

[19] C. Darwin, On the Origin of Species, Harvard University Press, 1852.

[20] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for

global optimization over continuous spaces, J. of Global Optimization 11

(1997) 341–359, https://doi.org/10.1023/A:1008202821328.

[21] D. Dua, C. Graff, UCI machine learning repository (2017). http://archive.ics.uci.

edu/ml.

[22] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of

ICNN’95 - International Conference on Neural Networks, Vol. 4, 1995, pp.

1942–1948 vol 4. doi:10.1109/ICNN.1995.488968.

[23] A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, 2nd Edition.,

Springer Publishing Company, 2015, Incorporated.

[24] R. Tanabe, A. Fukunaga, Evaluating the performance of shade on cec 2013

benchmark problems, in: 2013 IEEE Congress on Evolutionary Computation,

CEC 2013, 2013, pp. 1952–1959, https://doi.org/10.1109/CEC.2013.6557798.

[25] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, in: Wiley

Interscience Series in Systems and Optimization, Wiley, 2001.

[26] P. Moscato, Memetic Algorithms: A Short Introduction, McGraw-Hill Ltd., UK,

GBR, 1999, pp. 219–234.

[27] R. Burkhardt, Jean-Baptiste Lamarck: Biological Visionary, University of

Chicago Press, 2018, pp. 21–34. doi:10.7208/chicago/

9780226570075.003.0002.

[28] S. Lipschutz, K. Kirkpatrick, M. Lipson, Schaum’s Easy Outline of Linear Algebra,

Schaum’s Easy Outlines, McGraw-Hill Companies, 2002, Incorporated,

https://books.google.si/books?id=pkESXAcIiCQC.

[29] M. Cˇrepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in

evolutionary algorithms: A survey, ACM Comput. Surv. 45 (3). doi:10.1145/

2480741.2480752.

http://refhub.elsevier.com/S0925-2312(22)01499-0/h0070
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0070
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0070
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0075
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0085
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0085
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0085
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0085
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0085
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0095
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0095
http://archive.ics.uci/
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0115
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0115
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0115
https://doi.org/10.1109/CEC.2013.6557798
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0125
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0125
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0125
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0130
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0130
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0130
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0140
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0140
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0140
http://refhub.elsevier.com/S0925-2312(22)01499-0/h0140

