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 A  b  s  t  r  a  c  t 
 

Green AI refers to those AI methods that are friendly to the environment, i.e., are capable to keep the con- sumption of electrical energy at a minimum. In 

this sense, a new numerical association rule miner is pro- posed that presents a combination of the already existing offline uARMSolver, belonging to a Red 

AI class, and a newly developed onlineNARM miner representing the new Green AI. The former is devoted to exhaustive search of the evolutionary 

solution space, while the latter for faster exploiting of already explored search space. The experimental results on four transaction databases showed that, 

by sacrificing the quality of the results by 0:7 %, by the onlineNARM we can obtain the results almost 85:0 % faster than with the uARMSolver in the 

best test scenario. 

1. Introduction 

 
The implications and expanding the number of applications in 

Artificial Intelligence (AI) have an impact on almost every step of 

human endeavor. The main methods under the umbrella of AI have 

become a central point for researchers and practitioners across the 

globe. The accuracy of the modern AI solutions now achieve limits 

that were unimaginable several decades ago. For example, AI 

image recognition methods are nowadays going closer to or even 

beyond the accuracy achieved by humans. On the other hand, AI 

is now helping in searching for new therapeutics [1] at a much fas- 

ter pace than it was in the past. Fighting climate change is another 

role of AI these days, which is also researched heavily [2–4]. 

Indeed, climate change should be considered as one of the most 

significant challenges the humanity is facing today [5]. 

Even though AI influences on our lives drastically in a positive 

sense, every positive thing has its price. In the case of AI, one of 

those is high global energy consumption to emphasize that this 

process is still happening today. The accuracy obtained by AI solu- 

tions is a subject of many experiments, algorithm adaptations, 

parameter tunings, and optimizations that are computationally 

complex processes. Significantly, modern deep learning, neural 

architecture search, or AutoML pipelines are amongst the major 

contributors to the global carbon footprint that AI addresses. 

Therefore, AI impacts climate change in more than one way. Inter- 

 

estingly, Nordgren [6] pinpointed the dual role of AI concerning cli- 

mate change: on the one hand, AI contributes to the fight against 

climate change, while on the other, it also contributes to climate 

change itself. 

Human life has become endangered due to climatic changes on 

the Earth, especially global warming. A solution to this problem 

presents the so-called ”carbon law”, according to which emissions 

should be halved every decade from 2020 to 2050, when they 

should fall to around zero [7]. The name of the law was given in 

reference to exponential technologies, whose output per size is 

accelerating constantly, e.g., the silicon chip following Moore’s 

law, or modern technologies such as 5G, the Internet of Things, 

AI, which follows their exponential increases of output per size 

in specific periods. The most advantages towards a carbon-free 

society can be achieved by carbon-free digital solutions in domains 

like: Energy, Manufacturing, Agriculture, Building, Services, Trans- 

port and Traffic Management. Interestingly, these technologies, 

who are also part of AI, can help to reduce global carbon emissions 

by even 15 % [8]. 

The issues mentioned above are nowadays being investigated 

extensively in research communities. Researchers are aware that 

training large-scale computational models consumes a lot of elec- 

tricity, contributing to the global carbon footprint. In recent years, 

the term Red AI has been coined, which exposes [9] that numerous 

AI methods are unfriendly to the environment [10]. On the con- 

trary, all the AI methods that are friendly to the environment are 

referred to as Green AI. In line with this, different industries and 

start-ups are also trying to follow Green AI due to the environmen- 
 

. 
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tal impact, the reduction of energy, and potentially saving money. 

This will undoubtedly come to the fore as electricity becomes more 

expensive due to several world crises and high inflation. 

How to reduce computational power, to merge some critical 

steps in training computational models, to simplify preprocessing, 

or even Machine Learning (ML) pipelines, are topical questions that 

present challenges for the research community nowadays. Some 

solutions are smaller datasets used for training, lighter models 

[11], more optimized preprocessing tasks, different hardware 

architectures, or even different neural network architectures, e.g., 

spiking neural networks [12]. 

Association Rule Mining (ARM) is a part of data mining, where 

associations that are presented as implications are searched for 

within the transaction databases [13]. Usually, the transaction 

databases can represent big data when dealing primarily with mar- 

ket basket analyses or other business data [14]. We try to obtain 

new insights that help us to adapt to business needs. Nowadays, 

there are two primary methods for ARM, which can be classified 

in two groups, i.e., deterministic and stochastic. The deterministic 

methods ensure that we find an optimum solution in an unpre- 

dictable time. Still, we sacrifice computational and time resources, 

while the stochastic nature of an algorithm does not guarantee the 

best solution, but is much less expensive in terms of computational 

resources. Numerical Association Rule Mining (NARM) is a variant 

of canonical ARM, which can also operate with numerical and cat- 

egorical attributes concurrently [15,16]. The main benefit of this 

approach is that it can generally provide more accurate results. A 

considerable portion of algorithms for NARM are based on stochas- 

tic nature-inspired population-based metaheuristics, which are 

well-known algorithms capable for exploring a larger search space. 

This is needed when transaction databases consist of many numer- 

ical attributes. 

All these arguments can confirm that NARM is computationally 

a very expensive process, also due to the fact that the population- 

based algorithms need approximately between 25 to 51 indepen- 
dent runs to minimize the effect of randomness. Thus, there are 

formed work is summarized and the directions are outlined for 

the future work. 

2. Background information 

 
The background information, needed for understanding the 

subjects that follows, is discussed in this section. The fundamentals 

of Differential Evolution (DE) are reviewed first. Actually, this algo- 

rithm is used for online NARM due to its simplicity, efficiency and 

adaptational ability. The basics of NARM are illustrated next. The 

section is concluded with a description of a uARMSolver frame- 

work running on most Linux distributions as a package for solving 

the NARM problems [18]. 

 
2.1. Differential Evolution 

 
DE belongs to a class of stochastic nature-inspired population- 

based algorithms. Although it bases on a strong mathematical def- 

inition of vector differences, it is considered as an evolutionary 

algorithm because its crossover, mutation, and selection operators 

play a similar role as presented by Darwinian natural evolution 

[19]. The algorithm was developed by Storn and Price in 1995 

[20] and gained quickly a big community of developers quickly 

by solving the continuous as well as discrete hard problems. The 

adaptational ability of the DE cause many new variants to emerge 

since its birth. 

The DE is a population-based algorithm, where its population 

consists of NP real-valued vectors. Thus, each solution represents 

a particular solution of the problem to be solved. Operators of 

crossover, mutation, and selection are applied to this population. 

There are many ways how to apply the variation operators (i.e., 

crossover and mutation) to the population of solutions. The basic 

so-called ’rand/1/bin’ mutation strategy, for instance, selects two 

solutions randomly, and adds their scaled difference to the third 

solution, in other words: 

uðtÞ ¼ xðtÞ þ F - pðxðtÞ - xðtÞÞ; for i ¼ 1; .. . ; Np; ð1Þ 

challenges in reducing the complexity of the NARM process to sim- 
i r0 r1 r2 

plify and reuse rule mining models to follow the Green AI. 

This paper is an extension of our conference paper that was pre- 

sented at the SOCO 2021 conference [17]. The primary purpose of 

the conference paper was to develop a Green AI method by intro- 

ducing the NARM modeling that allows reusing the NARM models 

online instead of always generating these anew. A new algorithm 

named onlineNARM was developed and applied to the UCI ML 

Wine dataset [21]. The onlineNARM mined the association rules 

of similar quality compared with the results achieved by the offline 

uARMSolver. This was also better in the lower number of the 

mined association rules and the lesser computational time. In the 

current paper, we go a step further, and provide the following con- 
tributions/extensions to our previous work: 

where uðtÞ denotes the trial vector, F 2 ½0:1; 1:0] is the scaling factor 

regulating the rate of modification, Np denotes the population size 

and r0; r1; r2 are randomly selected values in the interval 

1; . . .  ; NP. 

Two kinds of crossover are used in the DE algorithm: binomial 

(denoted as ’bin’) and exponential (denoted as ’exp’). The binomial 

crossover copies on the same position layed elements, either from 

the trial or target vector, while the exponential crossover is similar 

to the 1-point crossover in genetic algorithms and copies all the 

elements from the trial vector until a probability of crossover is 

true. The other elements are copied from the target vector. The 

binomial crossover can be expressed mathematically as: 

 
• the onlineNARM is hybridized with many mechanisms that 

 

ðtÞ 
i;j 

ðtÞ 
i;j 
ðtÞ 

randjð0; 1Þ 6 CR _ j ¼ jrand ; ð2Þ 

allow it exploit the problem search space effectively, 

• the offline uAMSolver generates a state database, representing 

the basis on which the onlineNARM can start (raising the new 

Green AI method), 

• the results can be tested on four different UCI ML datasets, 

• analyzing the results of the proposed method in the sense of the 
time and space, 

xi;j otherwise; 

where CR 2 ½0:0; 1:0] controls the fraction of parameters that are 

copied to the trial solution, while a condition j ¼ jrand ensures that 

the trial vector differs from the original solution xðtÞ in at least 

one element. The selection in the DE is usually called as ’one-to- 

one’ and it can be expressed mathematically as: 

• identifying the operation of the proposed method in the sense 

of exploration/exploitation.In the remainder of the paper, its 

structure is as follows: Section 2 discusses the background 

x
ðtþ1Þ ¼ 

ðtÞ 

i 

ðtÞ 

i 

if f ðwðtÞÞ 6 f ðxðtÞÞ; 

otherwise: 

 

ð3Þ 

information needed for understanding the subjects that follow. 

The design and implementation of the onlineNARM is presented 

in Section 3. The experiments and results are the subjects of 

Section 4. The paper concludes with Section 5, in which the per- 

In the ’one-to-one’ selection, both the trial and the target solutions 

compete for surviving into the next generation, where the better 

between both according to the fitness function goes to the next 

generation. 
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2.2. Numerical association rule mining 

 
The ARM problem is defined formally as follows: Let us suppose 

a set of objects O ¼ fo1; . . .  ; omg and transaction database D are 

given, where each transaction T is a subset of objects T # O, and 

the variable m designates the number of objects. Then, an associa- 

tion rule is defined as an implication: 

X ) Y; ð4Þ 

where X c O; Y c O, in X \ Y ¼ £. The quality of the association rule 

is evaluated using the following three measures [13]: 

cessed before entering into the optimization. Thus, a discretization 

of attributes is made in order to be ready for entering into a trans- 

action database. Although more stochastic nature-inspired 

population-based algorithms are planned for inclusion into the 

framework, up to this point only two algorithms are available, 

i.e., DE [20] and Particle Swarm Optimization [22] (PSO). Both algo- 

rithms treat the ARM as an optimization problem. The visualiza- 

tion step supports the so-called Explanation AI (EAI), where the 

different visualization methods are applied in the sense of NARM. 

It is necessary to modify the following three components of the 

original DE algorithm for the uARMSolver: 

 conf ðX ) Y nðX [ YÞ ; ð5Þ 
 
• representation of a solution, 

Þ¼  
nðXÞ 

suppðX ) YÞ¼ 
nðX [ YÞ 

; ð6Þ 
N 

anteðX ) YÞþ consðX ) YÞ 

• genotype-phenotype mapping, 

• fitness function evaluation. 

 

Let us notice that the maximum number of fitness function evalua- 

tions (maxFEs) is employed as a termination condition. The initial 

inclðX ) YÞ¼  
m 

: ð7Þ population is generated randomly, while the standard mutation 

strategies as proposed by Storn and Price [20] and one-to-one selec- 

where conf ðX ) YÞ P Cmin denotes confidence, suppðX ) YÞ P Smin 

support and inclðX ) YÞ inclusion of the particular association rule 

X ) Y. The parameter N in Eq. (6) represents the number of trans- 

actions in the transaction database D, and nð:Þ is the number of rep- 

etitions of the particular rule X ) Y within D. Additionally, Cmin 
denotes minimum confidence and Smin minimum support, deter- 

mining that only those association rules with confidence and sup- 

port higher than Cmin and Smin are taken into consideration, 

respectively. 

Let us notice that functions anteðX ) YÞ and consðX ) YÞ in Eq. 

(7) represent a set of objects belonging to either the antecedent or 

consequent, respectively. Mathematically, these functions are 

expressed as: 

anteðX ) YÞ¼ fop jpj < CpðtÞ ^ ThðAttrðtÞÞ¼ enabledg, 

tion, are used in this algorithm. In the remainder of the section, the 

aforementioned components are described in detail. The section 

concludes with a description of the uARMSolver concept. 

 
2.4. Representation of a solution 

 
Solutions in a uARMSolver (i.e., association rules) are repre- 

sented in the genotype space as real-valued vectors: 

xi ¼ fxi;1; .. . ; xi;D; xi;Dþ1g; ð8Þ 

where sequences of elements xi;j for j ¼ 1; .. . ; D encode attributes of 

features, and the xi;Dþ1 is the control point separating the antecedent 

from consequent part of the particular association rule. Interest- 

ingly, the length of each solution is variable, and calculated accord- 
ing to the following equation: 

consðX ) YÞ¼ fop jpj P CpðtÞ ̂  ThðAttrðtÞÞ¼ enabledg. 
j i pj D ðCÞ ðCÞ ðNÞ ðRÞ 

The results of the optimization algorithm are stored into an ¼ jAttr j -  N þ jAttr j -  N þ 1; ð9Þ 

archive of mined association rules. Opposed to the traditional algo- 

rithms for ARM, where each rule with support and confidence bet- 

ter than Smin and Cmin is stored unconditionally, in NARM the 

archive is no longer generated uniformly. Instead, only those rules 

that outperform the current one according to the best fitness are 

stored into the archive. In this way, the size of the archive is 

reduced crucially. 

Interestingly, each numerical attribute in NARM is determined 

by an interval of feasible values limited by its lower and upper 

bounds. The broader the interval, the more association rules can 

be mined. The narrower the interval, the more specific relations 

are discovered between attributes. Introducing intervals of feasible 

values has two effects on the optimization: To change the existing 

discrete search space to continuous, and to adapt these continuous 

intervals to suit the problem of interest better. 

 
2.3. uARMSolver 

 
The universal framework for ARM [18] (i.e., the uARMSolver) is 

used as a testbed for evaluating the proposed online NARM. It was 

developed in the C++ programming language and, therefore, its 

main advantages are: speed, modular design, and open-source cod- 

ing. This miner covers all three steps needed for solving the NARM 

problems, i.e., preprocessing, optimization, and visualization. Due 

to its simplicity and efficiency, this is included as a software pack- 

age suitable for running on most current Linux distributions (e.g., 

Fedora, RedHat, etc.). 

The uARMSolver is an appropriate tool to deal with datasets in 

the UCI ML format [21]. These input datasets need to be prepro- 

where jAttrðCÞj and jAttrðRÞj denote the size, while NðCÞ and NðRÞ the 

number of either categorical or numerical attributes, respectively. 

Obviously, one is added in the equation to consider the size of the 

additional element, i.e., the control point. 

 
2.5. Genotype-phenotype mapping 

 
The aim of the genotype-phenotype mapping is to decode the 

solution in the genotype space to its counterpart in the phenotype 

space. The solution in the genotype space is of variable size and 

encodes the attributes of two types: categorical and numerical. 

Each type is decoded from a fixed sequence of real values. More 

specifically, the categorical attributes are encoded as triples: 

AttrðCÞ ¼ hpj; attrj; Thji; 

where 

pj -is the order number in the permutation of attributes; 

attrj  -is the value of the categorical attribute; 

Thj -is the threshold determining the presence or absence of 

the attribute in the rule: 

 

On the other hand, the numerical attributes are encoded in the 

genotype as quadruples: 

AttrðRÞ ¼ hpj; Lbj; Ubj; Thji; 

where 
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pj -is the order number in the permutation of attributes; 

Lbj; Ubj -are the lower and upper bounds of the numerical 

attribute; 

Thj  -is the threshold determining the presence or absence 

of the attribute in the rule: 

 
Straightforward mathematical equations are employed for decoding 

the particular values of the phenotype [18]. This process is illus- 

trated graphically in Fig. 1, from which it can be seen that three 

integer vectors are incorporated in the decoding process: (1) a per- 

mutation of attributes p, (2) a position pos, and (3) an attribute 

type. The permutation vector is obtained after sorting the elements 

pj for j ¼ 1; . . .  ; n of the corresponding attribute tuples, the position 

vector denotes the starting position of the particular attribute in 

vector xi, and the type vector highlights the type of each attribute 

(i.e., categorical ’C’ or numerical ’R’). This vector is actually used 

for determining the size of the particular attribute. 

 
 

2.6. Fitness function evaluation 

 
After decoding an association rule X ) Y from a genotype xi, the 

quality of the solution needs to be evaluated in the phenotype 

space. The quality is evaluated using the fitness function expressed 

as follows: 

 

 
 

Fig. 2. Offline ARM concept. 

 

 
3. Online NARM solver 

 
The uARMSolver using a DE algorithm serves as a tool allowing 

a detailed exploration of the NARM search space. The detailed 

exploration is possible because of an extended termination condi- 

tion allowing a long-term stochastic searching, and the nature of 

the original DE algorithm guaranteeing that the DE search process 

does not trap into a local optima too quickly. As a result, the mined 

rules expose the huge qualities in the sense of the fitness function. 

Contrarily, the motivation behind developing the online NARM 

algorithm is to mine the high quality solutions in the short-term. 

This demands that the online NARM needs to be designed very 

carefully by incorporating various components allowing the issue. 

The incorporated components for addressing this issue are as 

follows: 

 

• heuristic initialization, 

• adaptation of the DE control parameters, 

• mutation strategy, 

f ðx
ðtÞ a - suppðX ) YÞþ b - conf ðX ) YÞþ c - inclðX ) YÞ ;  ð  Þ • non-dominated solution selection, 

i Þ¼  a þ b þ c • local search improvement heuristic, 

• termination condition. 

where a; b, and c denote weights, suppðX ) YÞ; conf ðX ) YÞ, and 

inclusion inclðX ) YÞ represent the support, the confidence, and 

the inclusion of the observed association rule, respectively. 

 
 

2.7. The offline concept of the uARMSolver 

 
The uARMSolver processes transactions in the transaction data- 

base offline (Fig. 2). This means that all transactions are processed 

sequentially, while the results of this processing are the mined 

association rules. Let us notice that only those rules that improve 

the value of fitness function are stored into an archive of associa- 

tion rules, quite the contrary to the traditional algorithms for 

ARM, like Apriori [13], where the number of stored association 

rules is regulated by the thresholds Smin and Cmin. 

Obviously, if more transactions emerge for importing to the 

transaction database, the new association rules need to be mined. 

In this case, the ARM process starts anew, wherein the consump- 

tion of computational resources (e.g., space and time) increase 

drastically. Therefore, the online NARM is proposed to continue 

the mining process with reusing the model discovered by the 

uARMSolver. 

 
 

 
Fig. 1. Genotype-phenotype mapping. 

 

In the remainder of the section, the aforementioned components 

are illustrated in detail. The section terminates with a description 

of the concept of the online NARM solver. 

 
3.1. Heuristic initialization 

 
Initialization of a population can have a crucial impact on the 

results of the optimization for many types of problems [23]. This 

component is implemented in the onlineNARM twofold: heuristic 

and random. The heuristic initialization bases on knowledge 

explored by the uARMSolver. The explored knowledge, however, 

is accumulated within the population. Therefore, the original 

uARMSolver is modified, such that all the population individuals 

are saved into the so-called state population file, which can be 

restored later by the onlineNARM in the sense of initializing the 

population. 

The heuristic population acts as follows: The individuals from 

the state population are sorted first, and then inserted at random 

positions in the initial population. The number of inserted state 

individuals is controlled by a parameter ratio 2 ½0:0; 1:0]. This 

means, when the ratio ¼ 0:0, all the individuals from the state pop- 

ulation are copied into the initial population, and vice versa when 

ratio ¼ 1:0, the initial population is initialized randomly. In the 

case where the initial population size is less than the state one, 

the remainder of the places in the initial population are initialized 

randomly. 

 
3.2. Adaptation of the DE control parameters 

 
The Success History based Adaptive DE (SHADE) developed by 

Tanabe and Fukubaga in 2013 [24] is one of the more successful 

variants of the DE algorithm, whose main advantage lays in adap- 

tation of the DE control parameters F and CR. The adaptation has a 

crucial impact on the results of optimization in the sense of the 
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time and the quality. Therefore, this mechanism is included into pi ¼ rand½pmin; 0:2]; ð18Þ 
the onlineNARM as well. 

Historical memories MCR and MF , with a size limited by param- where p 
 

min is set such that the pbest individual can in the worst case 

eter H, are used by the adapting mechanism. Initially, the elements 

of the history memory MCR and MF are initialized to 0.5, and mod- 

be selected between two vectors, i.e., pmin ¼ 2=NP. However, the 

archive in the online NARM presents a state population that is ini- 
i i tialized with the best population borrowed from the uARMSolver 

ified according to the following equation [24]: 

CRi ¼ NðMCR;ri ; 0:1Þ; 
and updated with the best individuals mined during the evolution- 

ary search process. 

Fi ¼ CðMF 
 

;ri 

ð11Þ 
; 0:1Þ; 

where Nðl; rÞ denotes the randomly selected value drawn from 

the Gaussian distribution with mean l and standard deviation 

r; Cðl; rÞ is the randomly selected value drawn from the Cauchy 

distribution with mean l and standard deviation r, while ri is the 

randomly selected value drawn from the uniform distribution in 

the interval ½1; H]. 

The historical memories MCR and MF are modified according to 

the number of successfully changed individuals that are updated 

during the particular generation, and recorded in the so-called suc- 

cess history SCR and SF . The contents of these memories are modi- 

fied as follows: 

3.4. Non-dominated solution selection 

 
The onlineNARM uses a concept of domination [25] by selecting 

the best solutions. As it can be seen in Eq. (10), the fitness function 

is expressed as a linear combination of three objectives: a support, 

confidence and inclusion. These objectives are weighted by the 

coefficients a; b, and c, while the sum is maximized as a whole. 

However, all three objectives are conflicting to each other. This 

means that the multi-objective optimization approach [25] should 

be used in this case. On the other hand, we are interested in the 

maximum value of the fitness function. Therefore, in our study, 
we left the fitness function the same as in the uARMSolver (thus 

Mðtþ1Þ ¼ 

( 
meanWAðSCRÞ; if SCR – 0;  

ð12Þ comparison was kept between two miners), but changed the selec- 

CR;k MðtÞ ; otherwise; tion operation in DE (Eq. (3)). Actually, the selection operation in 
the original DE based on relation f ðwðtÞÞ 6 f ðxðtÞÞ is changed with 

i i 

 
 

F;k 

mean  ðS Þ;  if S – 0; 

MðtÞ ; otherwise; 

the domination relation f ðwðtÞÞ / f ðxðtÞÞ, where the sign / denotes 

the domination relation. According to the domination relation, 
the trial solution wðtÞ is no worse than xðtÞ in all objectives, and is 

i i 

where functions meanWA and meanWL are expressed as: 

jS j 

strictly better in at least one objective [25]. This dominance is 
expressed mathematically as wðtÞ  xðtÞ (is better than). 

mean S 
XC R  

w S 14 
i i 

 

  

w ¼ 
 Dfk  ; ð15Þ 
jSCRj 

Df k 

k¼1 

and Df k ¼ jf ðuðtÞÞ- f ðxðtÞÞj. The weighted Lehmer mean meanWLðSF Þ 
in Eq. (13) is expressed as follows: 

jSF j 
2 

F;k 

meanWLðSF Þ¼  k¼1  : ð16Þ 
j F j 

wk - SF;k 

k¼1 

Finally, the parameter k represents a position in the memory where 

an update is performed. This position changes in each generation, 

starting from the value k ¼ 1 to k ¼ H, where the parameter is reset 

to its initial value. 

 
3.3. Mutation strategy 

 
Also, an employed mutation strategy ’current-to-pbest/1/bin’ is 

borrowed from the SHADE algorithm. The main advantage of this 

strategy is the usage of an archive of best solutions found during 

the evolutionary process that collaborate actively by improving 

the current best solution.The mutation strategy is expressed as 

follows: 

 
Evolutionary Algorithms (EAs) can be applied to a broad spec- 

trum of problems, where little domain specific knowledge has 

already been explored. However, their performance can be 

improved drastically when the algorithm is hybridized with this 

knowledge. Practically, the domain specific knowledge can hybri- 

dize all components of the EAs. In our study, the proposed online- 

NARM is hybridized with the local search heuristics, besides the 

heuristic initialization. According to Moscato [26], these kinds of 

algorithms are known under the name Memetic Algorithms (MA). 

Three types of local search heuristics are developed for the onli- 

neNARM, as follows: 

 

• swap, 

• move, 

• amend. 

 

All the aforementioned local search heuristics act on the genotype 

level, while their effects follow the so-called Lamarckian theory 

[27], according to which all changes in a parent organism acquired 

during its lifetime are passed to its offspring. The swap local search 

heuristic takes one attribute in antecedent and one in consequent 

randomly, and changes their corresponding elements between each 

other, except the permutation one. The permutation value ensures 

that the ordering does not change, and changes are made on the val- 

ues of swapped attributes only. Let us mention that the different 
sizes of attributes (e.g., swapping between categorical and numeri- 

vðtÞ ¼ xðtÞ þ FðtÞ - ðxðtÞ - xðtÞÞþ FðtÞ - ðxðtÞ - xðtÞÞ; ð17Þ 
i i i pbest i i r0 r1 cal attributes) also need to be taken into consideration by this oper- 

ator. The move local search acts by selecting the i-th attribute in the 

where FðtÞ denotes the scaling factor corresponding to the i-th vec- 

tor, xðtÞ  is a randomly selected value drawn from the top NP x pi 
antecedent and k-th in the consequent randomly and assigning the 

permutation value either as p ! p or vice versa (i.e., p ! p ), 

members in generation t, and r1 is a randomly selected individual 

from the best ratio of the state population determined by the 

parameter pi . Thus, pi is calculated as follows: 

depending on the direction of the move operation. Let us emphasize 

that the sort operator in genotype-phenotype mapping moves the i- 

th attribute from antecedent to consequent and, oppositely, the j-th 

k¼1 3.5. Local search improvement heuristics 

ð13Þ 

( 
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attribute from consequent to antecedent. The last local search 

heuristic affects the values of the categorical attributes according 

to the following equation: 

definite number of generations (i.e., convergence window CW), 

where no improvements are detected anymore. 

 

ðCÞ 

i;pos½j]þ1 

 

ðCÞ 

i;pos½j]þ1 

 

ðCÞ 

i;pos½j]þ1 
; 0:05Þ; ð19Þ 

3.7. The concept of the onlineNARM solver 

while the numerical and real-valued values as follows: 
The original transaction database is divided into: a broker, and 

delta (Fig. 3). The former represents the original transaction data- 

ðRÞ 

i;pos½j]þ1 
ðRÞ 

ðRÞ 

i;pos½j]þ1 
ðRÞ 

ðRÞ 

i;pos½j]þ1 
ðRÞ 

; 0:05Þ; if Uð0:0; 1:0Þ < 0:5 
base in time t0 that is optimized initially using the offline uARM- 

Solver.  Two  additional  results  are  produced  after  the 

xi;pos½j]þ2 ¼ xi;pos½j]þ2 þ sign - Rðxi;pos½j]þ2; 0:05Þ; otherwise; 

ð20Þ 

where a function sign returns either -1 if Uð0:0; 1:0Þ < 0:5Þ or + 1 

otherwise, and Nðxð:Þ ; 0:05Þ for k ¼ ð1j2Þ denotes the random 

number drawn from the Gaussian distribution with mean xð:Þ 

and standard deviation 0.05. 

The local search heuristics are controlled using the parameter 

LS ratio. When the local search heuristics are launched, they try 

to improve the target i-th vector in the population. These are active 

until an improvements is detected. In each local search phase, the 

neighborhood of the target vector is generated according to the fol- 

lowing equation: 

8

> I:

f 
swap if Uð0:0; 1:0Þ < :5 

optimization, i.e., the archive of association rules (also the model), 

and the state representing a population of solutions obtained after 

the last exploring of the best solution. 

In time t1, new transactions have arisen that are collected into 

the delta transaction database. The onlineNarm miner merges the 

broker and delta databases into the original transaction database 

in time t2. Besides the original database, the online miner gener- 

ates a new archive of association rules model’ and a new state’ pop- 

ulation using the existing model and state. Thus, the onlineNARM 

solver does not optimize the transaction database anew, but con- 

tinues the optimization in the state where the last miner ended. 

In this way, this consumes less computer resources, especially 

time. 

Last but not least, the results of the onlineNARM can enter into 

the next cycle of the optimization process, where the original 
transaction database becomes the broker database, the model’ 

NeighðiÞ¼ 
<

 move  otherwise ð21Þ changes to the model, and the state’ to the state in the time t0 of 

II: 
amend if Uð0:0; 1:0Þ < :9 

n=a otherwise: 
 

As can be seen from the aforementioned equation, either swap or 

move local search heuristics are selected with equal probability in 

the first phase. Then, the amend local search heuristic is applied, 

with the probability 0.9 on the changed hybrid vector. 

 
3.6. Termination condition 

 
Selecting the proper termination condition in an onlineNARM 

has a crucial impact on its performance. The maximum number 

of fitness function evaluations (maxFEs) remains the main condi- 

tion for terminating the algorithm. However, too high a number 

of this parameter increases the time complexity, while a too low 

value of this parameter can terminate it too quickly, and, conse- 

quently, the better solution can be lost. Therefore, a balance needs 

to be found between the too fast convergence and too long explo- 

ration of the search space. 

In this algorithm, also the second termination condition is 

applied, according to which the algorithm is terminated after the 

the next cycle. This means that the model is not reused only once, 

but can be reused more times. 

 
4. Experiments and results 

 
The goal of our experimental work was to show that the results 

of the uARMSolver, using the exhaustive evolutionary search, could 

be reached, or even improved with the results obtained by the onli- 

neNARM, which employs the described mechanisms, allowing it to 

converge in significantly less time. As a result, the energy con- 

sumption is reduced drastically by decreasing the computational 

complexity, and, thus, justifies the foundations of the green AI. 

Two types of the DE algorithm were used in the comparative 

study: (1) the original offline uARMSolver, and (2) the hybrid onli- 

neNARM. The former serves for the initial exhaustive search space 

exploration, while the latter for the subsequent fast search space 

exploitation. Thus, the onlineNARM algorithm was hybridized 

with: heuristic initialization, adaptation of the DE control parame- 

ters, and using the ’current-to-pbest/1/bin’ mutation strategy, the 

non-dominated selection and the local search heuristics. The algo- 

rithms used the parameters as illustrated in Table 1 during the 

 
 

 
 

Fig. 3. Online ARM. 

x ¼ x þ sign - Nðx 

¼ x þ sign - Rðx 

: 



I. Fister, A. Iglesias, A. Galvez et al. Neurocomputing 523 (2023) 33–43 

39 

 

 

 

Table 1 

Parameter setting of the DE algorithms in the tests. 
 

Nr. Parameter Abbr. uARMSolver OnlineNARM 

1 Population size NP 100 100 

2 Fitness func. maxFEs 1,000,000 1,000 

 
3 

evaluations 

Convergence window 
 

CW 
 

200 

 
2 

4 Scale factor F 0.5 adaptive 

5 Crossover rate CR 0.9 adaptive 

8 Mutation strategy DE ‘rand/1/bin’ ‘cur.-to-pbest/1/ 

bin’ 

7 Heuristic initialization ratio n/a 0.5 

8 Local search probability LS ratio n/a 0.1 

 

 

 

 

runs. Each algorithm was run 30 times, and the best solutions 

according to the fitness function were observed in the analysis. 

The population size presents a standard value as proposed by 

the DE community. The termination condition maxFEs highlights 

the particular algorithm’s exploration/exploitation characteristics: 

While the offline miner emphasizes the exploration capability, the 

onlineNARM is more exploitative. Actually, these values represent 

a fair balance between too exhaustive exploration and too fast con- 

vergence to the local optima, as found during the extensive exper- 

iments. The DE control parameters F and CR were set either to the 

fixed values in the offline uARMSolver or to be adaptive in the onli- 

neNARM. The original ’rand/1/bin’ mutation strategy was 

employed in the first and the lSHADE ’current-to-pbest/1/bin’ in 

the second case. The last two parameters (i.e., ratio and LS_ratio) 

are applied in the onlineNARM only. 

Both algorithms were applied for solving the transaction data- 

bases from the UCI ML datasets [21]. As can be seen from Table 2, 

four datasets were selected, with different numbers of transac- 

tions, numbers of attributes, and their corresponding types. The 

purpose of the selection was to capture the various datasets 

according to these various characteristics. 

In order to simulate a trend of incoming transactions, a reversi- 

ble process was taken into consideration, which divides the origi- 

nal database into two partial databases according to the amount 

of transactions expressed by the percentage of the original ones. 

If, for instance, 10 % is selected, the higher 10 % of the transactions 

in the original database were attached to the broker, and the 

remainding 90 % to the delta database. 

To assess the results obtained by the uARMSolver on the final 

databases with the results of the onlineNARM on the partial broker 

database substituted with the delta ones, a cosine similarity 

between two classifiers u and v (i.e., the vectors of the results) is 

used that is expressed by the Schwartz-Cauchy inequality [28], 

as follows: 

 

cos / ¼ 
 ju - vj  

; ð22Þ 

jjujj - jjvjj 

 

where the term ju - vj denotes the inner product of two vectors, and 

the term jj:jj refers to the absolute value of the vector. 

 

Table 2 

Characteristics of the UCI ML datasets. 
 

Nr. Dataset #tran. #attr. Type 

1 Abalone 4,177 9 Mixed 

2 Page blocks 5473 11 Numerical 

2 Mushroom 8,125 22 Categorical 

3 Adult 32,561 14 Mixed 

The quality of the mined association rules were estimated 

according to Eq. (10) by both algorithms, thus, making the compar- 

ison possible. However, the better between trial and target solu- 

tions in one-to-one selection in the offline uARMSolver is 

selected according to the fitness function, while the non- 

dominated selection decides, which of the two solutions will sur- 

vive in the onlineNARM. 

 
4.1. Hardware configuration 

 
All runs were made on a personal computer IBM Lenovo using 

the following configurations: 

 

• Processor - AMD Ryzen 7–1700 3.90 GHz x 8, 

• RAM - 16 GB, 

• Operating system - Linux Ubuntu 22.04 Jammy Jellyfish (x86- 
64)19, 

• Cinnamon Version - 5.2.7. 

 

All versions of the tested algorithms were implemented within the 

Eclipse CDT Framework Version 2022–03. 

 
4.2. Results 

 
The following four reports are provided to justify the hypothesis 

set at the beginning of the section: 

 

• analysis of the detailed results, 

• quality analysis of the aggregate results, 

• time complexity analysis of the aggregate results, 

• analysis of the convergence speed. 

 

In the remainder of the section the aforementioned tests are dis- 

cussed in detail. 

 
4.2.1. Analysis of the detailed results 

In this experiment, we compared the performance of the online- 

NARM by various partial broker databases with the results as 

obtained by the uARMSolver on the original transaction database. 

The partial broker databases were observed at milestones deter- 

mined by 10 %, 25 %, 50 %, 75 %, and 90 % of the original database 

that are substituted with the corresponding delta databases to the 

original ones. The results of the offline uARMSolver, representing 

100 % of the original database, and this one, were added to the 

study as well. In summary, six instances of the problem were con- 

sidered. The goal of the onlineNARM was to get as near to the 

results of the uARMSolver as possible disregarding which broker 

database it was started from. 

The detailed results obtained by the ARM on the Adult database 

are presented in Table 3. The table is arranged into columns repre- 

senting the particular instances and rows representing various 

variables. The variables refer to the performance indicators and 

highlights the behaviour of the algorithm from different points of 

view. The meanings of the variables are presented in Table 4. 

Because the advanced analysis of the results according the quality 

and the time are performed in the remainder of the section, the 

focus, here, is on the detailed analysis of the performance indicator 

Rules. Indeed, the number of Rules increases from the value 611 

achieved by the uARMSolver to the value 731 by the onlineNARM 

except its instance starting with 25 % of the transactions of the 

original database, where 600 association rules are mined only. 

 
4.2.2. Quality analysis of the aggregate results 

The goal of this experiment was to compare the results of the 

onlineNARM obtained by optimization of all four observed transac- 

tion databases according to a quality of solutions, and to show that 
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Detailed results obtained by the Adult mining. 
 

Variable   onlineNARM   uARMSolver 

 10 % 25 % 50 % 75 % 90 % 100 % 

Broker DB 3,257 8,141 16,280 24,420 29,304 32,561 

Delta DB 29,304 24,420 16,281 8,141 3,257 0 

Rules 713 600 703 662 731 611 

Best fitness 0.799120 0.799498 0.799652 0.799693 0.799693 0.799693 

At FEs 318 181 170 96 65 845 

At time 149.62 93.17 104.33 71.76 73.59 479.60 

LS calls 239 219 217 251 259 n/a 

LS success 113 81 66 87 104 n/a 

LR rate 0.4728 0.3699 0.3041 0.3466 0.4015 n/a 

Total time 355.54 340.35 371.64 291.17 352.07 5,460.32 

 
Table 4 

Meaning of the variables. 
 

Variable Meaning 
 

 

Broker DB the size of the broker database per a particular instance 

Delta DB the size of the delta database per a particular instance 

Rules the number of rules mined 

Best fitness the best fitness function value 

At FEs the effective fitness evaluations needed for achieving the 

best fitness 

At time the effective time needed for achieving the best fitness 

LS statistics the number of calls, successful calls, and the rate of the 

successful calls 

Total time the total time needed for fulfilling the prescribed fitness 

function evaluations 
 

 

 

 
the onlineNARM can achieve results near to the optimal (i.e., as 

achieved by the uARMSolver). In line with this, the detailed results 

obtained by both solvers in the first experiment are aggregated and 

examined closely. 

The mentioned results according to the quality are presented in 

Table 5, from which it can be seen that the onlineNARM achieved 

results equal to the optimal at the higher instances of the broker 

databases (i.e., P 50 ~ %), while these are near to the optimal at 

the lower instances. 

Two statistical test were conducted to show that the results 

achieved by the onlineNARM are not statistically significantly dif- 

ferent from the results of the uARMSolver: (1) a 2-tailed pairwise t- 

test for significance level a ¼ 0:01, and (2) a cosine similarity test. 

The results of these statistical tests are illustrated in Table 6. As can 

be seen from the table, the results of the onlineNARM are not sig- 

nificantly different from the optimal results according to the 2- 

tailed parwise t-test for the significance level 0.01. Also the cosine 

similarity test indicates the irrelevant differences in the quality of 

mined association rules between both miners. 

 

4.2.3. Time complexity analysis of the aggregate results 

The analysis of time complexity addresses the results obtained 

by both miners according to the total time, and it is divided into 

two parts: In the first part, the comparison between the online- 

Table 6 

Results of the statistical tests. 
 

Dataset Parwise t-test Cosine similarity 
 

 p-value p < 0:01 cos / SC 

Abalone 0.145997 No 0.999998  1 

Page blocks 0.058864 No 0.999971  1 

Mushroom 0.149438 No 0.999961  1 

Adult 0.175609 No 1.000000  1 

 
 

NARM by mining the association rules on various instances of 

the broker databases is conducted without considering the initial- 

ization phase, while, in the second part, this phase is also taken 

into consideration. 

The results of the first part are presented in Table 7, from which 

it can be seen that the onlineNARM spends from 4.27 % by handling 

the Page blocks transaction database to 6.32 % for the Adult data- 

base of the total time spent by the uARMSolver, on average. 

The situation is changed slightly, when the initialization phase, 

performed with the uARMSolverI (i.e., uARMSolver on the particu- 

lar broker database) on the particular broker database, is taken into 

account (Table 8). The results in the table show that the total time 

of the initialization phase consumed by the uARMSolverI cannot be 

neglected. Indeed, the consumption of time is expanded from 

36.47 % by mining the rules in the Mushroom database to 46.17 

% by mining in the Abalone database, in average. 

 

 
Table 7 

Results of the UCI ML dataset mining according to the total processing time without 

considering the initialization phase. 
 

 

Dataset onlineNARM uARMSolver 
 

 10 % 25 % 50 % 75 % 90 % 100 % 

Abalone 50.70 45.77 51.44 52.81 49.43 1047.63 

Page blocks 56.13 61.86 74.10 73.55 69.47 1553.15 

Mushroom 37.65 35.62 36.29 30.71 34.61 654.49 

Adult 355.54 340.35 371.64 291.18 352.07 5,460.32 

Average 125.00 120.90 133.37 112.06 126.39 2,178.89 

 

Table 5 

Results of the UCI ML dataset mining according to the best fitness. 
 

Dataset   onlineNARM   uARMSo. 

 10 % 25 % 50 % 75 % 90 % 100 % 

Abalone 0.958733 0.959691 0.962883 0.962883 0.962883 0.962883 

Page blocks 0.893438 0.902153 0.905320 0.911594 0.912446 0.912629 

Mushroom 0.703177 0.703177 0.692967 0.688764 0.703177 0.703177 

Adult 0.799120 0.799498 0.799652 0.799693 0.799693 0.799693 

Average 0.838617 0.841129 0.840205 0.840733 0.844549 0.844595 
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Table 8 

Results of the UCI ML dataset mining according to the total processing time with also considering the initialization phase. 
 

Dataset   uARMSolverI + onlineNARM   uARMSolver 

 10 % 25 % 50 % 75 % 90 % 100 % 

Abalone 138.07 260.074 687.89 689.11 1,044.71 1,047.63 

Page blocks 191.60 480.97 877.85 1,324.33 1,635.76 1,553.15 

Mushroom 103.56 172.49 441.42 554.91 806.43 654.49 

Adult 910.76 1,775.24 3,369.75 4,608.17 5,957.40 5,460.32 

Average 335.99 672.19 1,344.23 1,794.13 2,361.08 2,178.89 

 

However, when particular instances of the broker databases are 

taken into consideration, the following assertion holds: The lower 

the instance, the higher the total time savings. Obviously, the 

opposite also holds: The higher the instance, the smaller the sav- 

ings. For instance, the savings amount to even more than 85 % 

for the instance containing the 10 % of transactions from the orig- 

inal transaction database, and 0 % saving for the instance contain- 

ing the 90 % of transactions of the original transaction database. 

 
4.2.4. Analysis of the convergence speed 

This experiment was devoted to indicating how effective an 

evolutionary search process of the particular miners is. In line with 

this, the number of fitness function evaluations (FEs) was recorded, 

when the best fitness was detected. This number has a crucial 

influence on setting the convergence window CW that represents 

the second termination condition used in both miners. 

The results of the experiment are illustrated in Table 9. From 

the table, it can be seen that the instances of broker databases con- 

taining the smaller number of transactions in the broker database 

demand more fitness functions evaluations to converge. When 

comparing the FEs achieved by the onlineNARM with those 

obtained by the offline uARMSolver, it can be concluded that the 

last one needed more evaluations to converge. This fact can be 

ascribed to the fact that the offline uARMSolver does not use any 

hybrid methods for improving its evolutionary search process. 

Interestingly, the convergence window CW terminates the exe- 

cution of the search process in the uARMSolver, while the online- 

NARM is more sensitive on the maxFEs termination condition. 

Although the convergence window was set extremely low in the 

onlineNARM, the diversity of population ensured discovering the 

new promising solutions, and, thus, prevented it from terminating 

prematurely. 

 

4.3. Discussion 

 
The time complexity of the stochastic nature-inspired 

population-based algorithms, like EAs, is usually limited by using 

the parameter maxFEs. Here, the main issue is how to determine 

this parameter such that the corresponding EA is already able to 

discover the new best solutions, and to prevent the evolutionary 

search process from getting stuck in the local optima. There, we 

are confronted with the problem of exploration/exploitation [29]. 

This means too much selection strength, too fast loss of the popu- 

lation diversity. On the other hand, although the population diver- 

 

Table 9 

Results of the UCI ML dataset mining according to the FEs. 
 

Dataset onlineNARM uARMSolver 

sity is a required condition for discovering the best solutions, it 

does not ensure that these can really be discovered. Due to a lack 

of theoretical studies in the domain, the reasonable setting of these 

values was determined experimentally. As a result, the proposed 

values, as found in our study, could be a good starting point for 

other potential researches. 

In order to decrease the value of the parameter maxFEs, gener- 

ally, the proposed method applies the offline uARMSolver for an 

exhaustive evolutionary search at the beginning that consumes a 

reasonable number of the fitness function evaluations. The reason- 

able number was determined by the second termination condition 

in the form of the convergence window CW experimentally, such 

that this was suitable for all the problems under consideration in 

general. For instance, the uARMSolver needs almost 100 genera- 

tions (i.e., FEs ¼ 9; 236 or 9; 236=100 � 100 generations) to obtain 

the best solution by mining the rules within the Mushroom data- 

base, although the same algorithm found the optimal solutions 

earlier for the other databases (Table 9). Therefore, the selection 

of the parameter CW ¼ 200 seems reasonable in summary. 

The onlineNARM is applied with reusing the model built by 

uARMSolver, whose time complexity can be controlled with the 

lower value of maxFEs ¼ 1; 000 and CW ¼ 2 due to the quicker con- 

vergence of the online algorithm. The results of this algorithm 

according to the total time are promising, especially for the 

instances with a lower number of transactions in the broker data- 

bases. For instance, the quality of the results by the onlineNARM 

are only 0:7 ~ % worse than by the uARMSolver in average 

(Table 5), although these were obtained by the former algorithm 

in even 84:24 ~ % less time in average (Table 8), when the smallest 

size of the broker database (i.e., 10 ~ %) is observed. Finally, the 

question should arise, how to define the value of the parameter 

maxFEs more precisely. Obviously, the answer to this question 

might be found in an analysis of the exploration/exploitation 

behavior of the onlineNARM algorithm on different problems. 

Furthermore, the faster convergence of this algorithm is 

ensured by additional mechanisms, like: heuristic initialization, 

adaptation of the F and CR parameters, mutation strategy 

’current-to-pbest/1/bin’ using an archive of the previous best solu- 

tions, non-dominated selection, and local search heuristics. Heuris- 

tic initialization, for instance, depends on the setting of the 

parameter ratio that regulates if the initial solutions are generated 

heuristically or randomly. When the majority of the initial solu- 

tions are generated heuristically, the final result is usually a fast 

convergence to the local optima, while the majority of the random 

initial solutions cause a slow convergence. The evidence of the fas- 

ter convergence is reflected in Table 9, where the onlineNARM 

used 87:59% of fitness function evaluations less than the uARMSol- 

ver (Table 9) in average. 

Indeed, some drawbacks of the method have been discovered 

during the research study. These can be summarized in two facts 

as follows: 

 

• identifying the distribution of transaction classes in the broker 
database with the original one, 

• improper handling with the big data. 

 10 % 25 % 50 % 75 % 90 % 100 % 

Abalone 561 194 100 100 171 288 

Page blocks 228 196 321 183 98 718 

Mushroom 268 530 97 227 54 9,236 

Adult 318 181 170 96 65 845 

Average 343.75 275.25 172.00 151.50 97.00 2,771.75 
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Fig. 4. The Figure presents a comparison of distributions of transaction classes 

between the original and broker datasets obtained from the Mushroom UCI ML 

dataset by dividing percentage of 10%. As can be seen from the Figure, there are 29 

different classes into which transactions can be classified. In the original dataset, 

these classes are normally distributed, while the distribution is more scattered in 

the case of the broker dataset. 

 
 

The present study assumes that the transactions in UCI ML datasets 

are aggregated in some history ordering. Therefore, the broker data- 

sets are generated by dividing the original dataset into two parts 

according to the dividing percentage and regardless of the classes 

of the transactions being subjects of the dividing. This dividing, 

actually, does not consider that the distribution of the transactions 

in a broker database needs to be equal with those in the original 

(Fig. 4). 

This distribution is not so important in datasets of variable size, 

where the transactions are added to the transaction database 

online. However, simulating the online process, like in our case, 

can prevent the onlineNARM from achieving the same results as 

the uARMSolver on each instance of the problem, especially, due 

to the different distribution of transaction classes. 

As discovered during the experimental work, the uARMSolver 

could have a problem with handling big data, due to reading the 

whole data from the transaction database into a computer mem- 

ory. Obviously, the problem could be solved easily by paging parts 

of the real from the virtual memory, where only parts of the whole 

database are presented in the computer memory at once. As a mat- 

ter of fact, we did not observe this kind of problem, because we did 

not deal with the raw big data, in our study. 

However, only one cycle of the onlineNARM was tested during 

our preliminary tests. Obviously, when the onlineNARM with reus- 

ing the model would repeat over more cycles, the savings in time 

(and indirectly in energy consumption) would be increased 

drastically. 

 

5. Conclusion 

 
The ARM is a hard ML problem in the sense of time and space 

complexity and consequently demands a lot of electrical energy 

for solving on digital computers. Therefore, it is classified in the 

class of Red AI, that represents a set of algorithms consuming too 

much electrical energy, and are indirectly unfriendly for the envi- 

ronment. This paper proposes a combination of the offline uARM- 

Solver and onlineNARM, capable of drastic decreasing of the time 

complexity, and, consequently, also the electrical consumption 

by solving the problem. This method could be a potential candidate 

for classification in the Green AI class. 

A lot of directions exists for improving the method: At first, the 

more complex transaction databases could be taken into consider- 

ation (e.g., the Hadoop environment for big data analytics). Next, 

the onlineNARM could be included into the uARMSolver frame- 

work as an independent process that could use the uARMSolver 

for initialization. Furthermore, the onlineNARM could be applied 

to data arising in data centers and cloud computing platforms, 

where huge electricity consumption takes place. Finally, additional 

improvements could be conducted, in order to reveal the processes 

of exploration and exploitation in more detail. The result of this 

study could help us to determine the termination condition in 

the onlineNARM more precisely. 
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