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Abstract—In this paper, we present a method to obtain the dis-
tance between two fixed points of a Bézier surface by minimizing
the length of curves on the surface linking the two points. We
use a discretization of the classical orthogonal variations method
for a regular planar curve. We provide interesting examples of
Bézier surfaces which approximate the cylinder, the sphere and
the hyperbolic paraboloid.

Index Terms—Bézier surface, geodesic curve, minimal distance

INTRODUCTION

In the plane, in the Euclidean space, the segment between
two points is the shortest curve linking them, and it gives the
distance between both the points. However, what happens if
we consider two points on an arbitrary surface is an intriguing
question. We know that the shortest curve embedded on the
surface linking two points is a geodesic and it provides the
distance between the points on the surface [2]. The solution
of this problem has practical applications in areas of geometric
design, e.g. [3], [4], [5], [6], [7], [8], [9], [10].

Computation of geodesics on parametric surfaces can be a
complicated process. A geodesic curve is the solution of the
following system of equations such that,

d2xk
ds2

+

n∑
i,j=1

Γkij
dxi
ds

dxj
ds

= 0,

where xi(s) are the parametric equations of the curve and Γkij
are the Christoffel symbols of the surface. Moreover, from
the calculus of variations, a geodesic curve joining two points
is the curve that minimizes the squared length function, as
defined in Equation (2), from all the curves on the surface
linking the two points.

In order to simplify the computation of geodesics, we in-
troduce a new method which adapts the classical orthogonal
calculus of variations of curves of differential geometry for
discrete orthogonal variations of Bézier curves. The advantage
of our method is that the approximated geodesic curve is
obtained by solving a system of polynomial equations.

The rest of the paper is divided into four sections. The first two
sections that follow introduce the notations and the problem,
respectively. In the third section, we describe our method in
step by step. In Section IV, we illustrate our method using
three particular surfaces, namely, the cylinder, the sphere and
the hyperbolic paraboloid. Finally, in Section V, we conclude
the paper.

I. NOTATIONS

Let Bni (u) and Bmj (v) be the Bernstein basis functions of
degree n and m, respectively. A regular Bézier surface with
the control points, Pij ∈ R3 (0 ≤ i ≤ n, 0 ≤ j ≤ m) is the
parametric surface defined by,

χ(u, v) =

n∑
i=0

m∑
j=0

PijB
n
i (u)Bmj (v), (1)

for (u, v) ∈ U = [0, 1]×[0, 1] ⊂ R2, such that ∂χ∂u×
∂χ
∂v (u, v) 6=

0, for (u, v) ∈ U.

Given Q0 and Q1 defined to be two fixed points on χ(u, v),
there are two fixed points q0 and q1 in U such that χ(q0) = Q0

and χ(q1) = Q1.

A Bézier curve of degree l in U linking q0 and q1 is determined
by a set of control points in U , {Pi}l−1i=1, and has the following
parametric equations forms such that,

α(t) = Bl0(t)q0 +

l−1∑
i=1

Bli(t)Pi +Bll(t)q1,

for t ∈ [0, 1].

The parametrization χ, maps the Bézier curve α(t) to a curve
on the Bézier surface, β(t) = χ(α(t)), which links Q0 = β(0)
and Q1 = β(1). Moreover, α(t) = (u(t), v(t)) with,

u(t) = Bl0(t)q10 +

l−1∑
i=1

Bli(t)P
1
i +Bllq

1
1 ,

v(t) = Bl0(t)q20 +

l−1∑
i=1

Bli(t)P
2
i +Bllq
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where q0 = (q10 , q
2
0), q1 = (q11 , q

2
1), Pi = (P 1

i , P
2
i ) are the

coordinates of these points. We note that if we fix the control
points of the Bézier curve α(t) and those of the Bézier surface
χ(u, v), then u(t) and v(t) are polynomials of degree l in
the variable t and the curve β(t) = χ(u(t), v(t)) is also a
polynomial curve in R3. In particular,

β(t) =

n∑
i=0

m∑
j=0

PijB
n
i (u(t))Bmj (v(t)),

has polynomials of degree n · m · l2 in the variable t in its
three coordinates.

The length of the curve β(t) is defined by L(β) =∫ 1

0

√
|β′(t)|dt, where | | denotes the norm of vectors in

the Euclidean space R3. We can consider the squared length
defined by,

L2(β) =

∫ 1

0

|β′(t)|dt, (2)

which is easier to compute.

II. THE PROBLEM

Given a parametric surface and two points on it, we want to
find a geodesic curve on the surface joining these points.

In order to provide an approximate solution of this problem,
we first propose to approach the surface by a Bézier surface.
There can be several methods to produce such an approx-
imation. We propose the one given in [1] by the authors.
By using that normal approximation method, every parametric
surface can be approximated by a unique Bézier surface. Next,
by following the method that we introduce in this paper, we
approach the geodesic by a polynomial curve.

III. THE METHOD

In this section, we propose a method to approximate the
distance between two points Q0 and Q1 on the Bézier surface
χ(u, v), by minimizing the length of curves linking these two
points. Therefore, by fixing a regular Bézier surface χ(u, v)
and two points Q0 and Q1 on it, we obtain a polynomial curve
linking both points which provides us an approximation of the
distance between Q0 and Q1 on χ(u, v).

To describe this method we shall follow the following steps.

Step 1: We fix q0 and q1 in U = [0, 1]× [0, 1] ⊂ R2 such that
χ(q0) = Q0 and χ(q1) = Q1 and we describe the discrete
orthogonal variations of a regular parametrized plane curve
linking the points q0 and q1 in U ⊂ R2.

We consider α : [0, 1] −→ U ⊂ R2 a regular parametrized
plane curve in U such that α(0) = q0 and α(1) = q1 and
we denote by n(t) the unit normal vector to the curve α at
the point α(t). We choose n + 1 values 0 = t0 < t1 <
· · · < tn−1 < tn = 1 and we obtain n+ 1 points of the curve

Pi = α(ti). For each i ∈ {1, . . . , n−1} we consider the points
Pi(λi) = Pi + λin(ti), with λi ∈ R such that Pi(λi) ∈ U.

Figure 0. From all these points, we construct a family of
Bézier curves.

α(λ1, . . . , λn−1, t) = Bn0 (t)q0 +

n−1∑
i=1

Bni (t)Pi(λi) +Bnn(t)q1,

depending on λ1, . . . , λn−1, all of them parametrized for
t ∈ [0, 1] and satisfying that α(λ1, . . . , λn−1, 0) = q0 and
α(λ1, . . . , λn−1, 1) = q1.

Step 2: The parametrization χ defined in (1) maps this family
to the following family of polynomial curves on the Bézier
surface χ(u, v):

β(λ1, . . . , λn−1, t) = χ(α(λ1, . . . , λn−1, t)),

depending on λ1, . . . , λn−1, all the curves parametrized by
t ∈ [0, 1] and satisfying that β(λ1, . . . , λn−1, 0) = χ(q0) =
Q0 and β(λ1, . . . , λn−1, 1) = χ(q1) = Q1.

Step 3: We define the function,

F (λ1, . . . , λn−1) =

∫ 1

0

| d
dt
β(λ1, . . . , λn−1, t)|2dt,

which represents the squared length of the curve
β(λ1, . . . , λn−1, t). Note that as a consequence of the
fact that the curve β(λ1, . . . , λn−1, t) is polynomial, we have
that the function F (λ1, . . . , λn−1) is also polynomial.

Step 4: We want to minimize the function, F (λ1, . . . , λn−1)
and to obtain a curve whose length is minimal from all
the curves of the family. We need to solve the following
polynomial equations system,

∂F

∂λi
= 0, for all i = 1, . . . n− 1.

A solution λ01, . . . , λ
0
n−1 of this polynomial equations system

provides the points Pi(λ0i ) which determine a minimal curve
β(λ01, . . . , λ

0
n−1, t) and an approximation of the distance be-

tween Q0 and Q1 on the Bézier surface. If we cannot find an



exact solution for λ01, . . . , λ
0
n−1, we just approximate them by

using any resolution method for polynomial equations system.

IV. EXAMPLES

In this section we show the above procedure in three partic-
ular cases. We consider three pieces of regular surfaces, the
cylinder, the sphere and the hyperbolic paraboloid, which are
approximated by three Bézier surfaces. To approximate these
regular surfaces the authors propose the normal approximation
method described in [1].

We have chosen the cylinder and the sphere because their
geodesics are well-known and easy to compute. Therefore, we
can compare them with our approximated solutions. Concern-
ing the hyperbolic paraboloid, we have chosen it because it is a
polynomial surface and therefore, the necessary computations
to produce the approximated minimal curve are easier than in
other cases.

Example 1: Let χ(u, v) be an approximated Bézier surface of
a piece of cylinder. We fix on χ(u, v) two points Q0 and Q1.

Figure 1. Approximated Bézier surface of cylinder, with Q0

and Q1.

We consider q0 and q1 in U such that χ(q0) = Q0 and χ(q1) =
Q1. We make discrete orthogonal variations of the segment
linking both points by taking two intermedite points P1(λ1)
and P2(λ2). We construct the family α(λ1, λ2, t) of Bézier
curves in U with control points q0, P1(λ1), P2(λ2), q1.

Figure 2. Discrete orthogonal variations of the segment
between q0 and q1 in U.

We map the curves of the variation in U to the surface χ(u, v).

Figure 3. Variations of curves in χ(u, v).

We minimize the function F (λ1, λ2, t) and we obtain a curve
which provides the distance between Q0 and Q1 on χ(u, v).



Figure 4. Minimal curve in χ(u, v).

It is known that, in the real cylinder, the image of a segment
in U is the minimal helix joining two points in the cylinder
and this helix is the minimal geodesic between both points. If
we consider the image of the segment between q0 and q1, we
obtain the minimal helix linking Q0 and Q1. Therefore, the
calculated minimal curve is an approximation of the minimal
helix.

Figure 5. Minimal curve (in red) and image of the segment
(in blue).

Example 2: Let χ(u, v) be an approximated Bézier surface of
a piece of sphere and let Q0 and Q1 be two fixed points on
it.



Figure 6. Approximated Bézier surface of sphere, with Q0

and Q1.

We consider q0 and q1 in U such that χ(q0) = Q0 and χ(q1) =
Q1. We make discrete orthogonal variations of the segment
linking both points by taking two intermedite points P1(λ1)
and P2(λ2). We construct the family α(λ1, λ2, t) of Bézier
curves in U with control points q0, P1(λ1), P2(λ2), q1. Look
at Figure 2.

We map the curves of the variation in U to the surface χ(u, v).

Figure 7. Variations of curves in χ(u, v).

We minimize the function F (λ1, λ2, t) and we obtain a curve
which provides the distance between Q0 and Q1 on χ(u, v).

Figure 8. The minimal curve joining Q0 and Q1.

In the case of the sphere, we know that the geodesics are the
great circles on it. Therefore, if we fix Q0 and Q1 on the
approximated Bézier surface of the sphere, the intersection
curve of the surface and the plane through Q0, Q1 and the
origin, can supply us an approximation of the geodecic linking
Q0 and Q1 on the sphere which provides the minimal distance
between both points. Next, in the following figure, we compare
graphically the obtained minimal curve and the approximated
arc of great circle linking Q0 and Q1.



Figure 9. Comparison between the minimal curve (in red)
and the great circle through Q0 and Q1 (in blue).

Example 3: Let χ(u, v) be an approximated Bézier surface
of a piece of hyperbolic paraboloid. We fix on χ(u, v) two
couples of points: Q0-Q1 and Q2-Q3. We directly offer the
final result in Figure 10. Let us point out that, in this case,
the solution of the polynomial equations system in Step 4 is
exact (not an approximated one).

Figure 10. Minimal curves linking Q0-Q1 and Q2-Q3

V. CONCLUSION

The problem of computing the minimal curve between two
points on an arbitrary surface is solved polynomially. If we
approximate the surface by a Bézier surface, we can obtain
discrete orthogonal variations by planar Bézier curves and we
can minimize the length of the planar variational curves on
the Bézier surface. We have, by way of examples, shown how
this is feasible particularly for the Bézier approximation of the
cylinder, the sphere and the hyperbolic paraboloid.
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