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A B S T R A C T

By extending the work published at ICCS 2021 [1], in this paper we propose a new method for using
multiple explicit PDE surface patches to reconstruct complex 3D shapes from point clouds. Our pro-
posed method includes segmenting a given point cloud into several subsets, parameterizing the points,
and fitting one PDE patch to the parameterized points in each of the subsets to reconstruct 3D shapes.
Several surface reconstruction examples are presented to demonstrate our proposed method. The com-
parison with polygon-based surface reconstruction shows fewer design variables and better quality of
our method.

1. Introduction

Surface reconstruction from point clouds is an important ele-
ment of reverse engineering, which has been widely adopted in
many domains, such as automotive, aerospace, and ship build-
ing industries, robotics, biomedical engineering, cultural heritage,
and many others [2, 3, 4]. Many kinds of representations have
been proposed for reconstructed 3D shapes, and they mainly can
be divided into two categories: explicit surfaces and implicit sur-
faces. Each category includes various subclasses. For explicit sur-
faces, Bézier, B-spline, and NURBS surfaces have been widely ex-
plored. Implicit surface representation like level set function has
also been broadly researched. However, all of these methods have
some disadvantages in common as they require big data storage
and heavy geometry processing.

To overcome such shortcomings of existing representations, an
explicit partial differential equation (PDE) based method for sur-
face reconstruction from point clouds is proposed in this paper.
Compared to other types of 3D representations, PDE surfaces have
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several advantages. First of all, they require a smaller storage ca-
pacity when representing the same 3D shape. Secondly, adjacent
PDE-based surface patches can naturally preserve position, tan-
gent and even curvature continuities when they share the same
boundary conditions. Thirdly, a sculpting force can be applied and
the parameters in a PDE can be adjusted to create complex 3D
shapes.

This work is inspired by the process of manually creating 3D
shapes, which usually applies the method of patch-based mod-
elling. Techniques developed in point cloud data including bound-
ary extraction and part segmentation have also motivated our work.
Based on these ideas, we propose to reconstruct PDE surfaces
from point clouds by segmenting a 3D point cloud into several
subsets and fitting the points in each of the subsets with one ex-
plicit PDE patch. Because of the advantages of PDE surfaces, these
patches can easily achieve and naturally maintain required conti-
nuities when proper boundary conditions are formulated from the
points in each of the subsets. Such a patch-by-patch reconstruc-
tion method has remarkable benefits. Since it is difficult to recon-
struct a complicated 3D shape with only a single PDE patch, com-
bining multiple PDE patches enables any complicated 3D shape
to be reconstructed. In addition, fitting a 3D point cloud patch by
patch would improve the reconstruction efficiency as multiple seg-
mented patches can be reconstructed simultaneously, making the
process very suitable for parallelization.

The paper is organized as follows. Related work is reviewed in
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Section 2. Our proposed surface reconstruction pipeline is sum-
marized in Section 3. In Section 4, the explicit PDE model will be
firstly explained in detail, followed by point cloud decomposition
and parameterization. At the very last of Section 4, multiple PDE
patches will be used to fit the point clouds representing some types
of 3D shapes. The experimental results and their analysis, along
with a comparison with a popular polygon-based surface recon-
struction method, will be presented in Section 5. Finally, we will
conclude the paper and outline some directions for future work in
Section 6.

2. Related work

There are many research works reported in the literature to
address the problem of surface reconstruction from point clouds.
Comprehensive and detailed literature reviews can be found in
[5, 6, 7]. From the perspective of surface representation, sur-
face reconstruction can be roughly divided into explicit and im-
plicit based representations. Parametric surfaces are one type of
explicit surfaces. They include very popular surfaces in computer-
aided design and computer graphics such as Bézier surfaces [8],
B-spline surfaces, and NURBS surfaces [9], etc. In addition, trian-
gulated surfaces also belong to explicit surfaces. Implicit surfaces
include level set surfaces, Poisson surfaces, and many others. An-
other approach is based on the use of partial differential equations
(PDEs) for surface reconstruction; see [10] for an overview on the
field. In recent years, different machine learning methods, mostly
based on neural networks and deep learning [11, 12], metaheuris-
tic techniques such as genetic algorithms and nature-inspired op-
timization algorithms [13, 14], or combinations of both [15] have
also been used for 3D reconstruction from point clouds. In this
section, we will briefly review some of the recent works, which
are closely related to this paper.

For parametric surfaces, Sharma et al. presented a paramet-
ric surface network for 3D point clouds and it was an end-to-end
trainable model [16]. They firstly decomposed a 3D point cloud
into several basic geometric primitives and B-spline patches, and
the number of patches was automatically determined. Then they
fit each segmented portion of the point cloud with a parametric
patch. Post-processing was also necessary to better fit the point
cloud, but producing seamless boundaries was still a challenge.
Lee et al. proposed an approach to preserve sharp features for
B-spline surface reconstruction from point cloud [17]. One chal-
lenge of B-spline surface reconstruction is that sharp features tend
to be smooth out. Lee et al. took advantage of the curvature infor-
mation of the B-spline patch and identified segments of sharp fea-
tures, which could be preserved by adding more points to those
regions. However, their method was only applied to a relatively
simple shape of point clouds. The B-spline approach also contains
some limitations. For instance, the rigid structure of the B-spline
recurrence formula and its constraints on the order of the param-
eters and the basis functions can lead to models that have signifi-
cantly larger number of degrees of freedom than it should be ac-
tually required. On the other hand, it is well known that B-splines
are not well suited to model T-junctions, and hence, it is difficult to
apply them to structural modeling involving such features. NURBS
surfaces have been proposed to overcome the shortcomings of B-
spline surfaces, as they are a generalization of the classical poly-
nomial B-splines. Dimitrov et al. presented a new approach for
NURBS surfaces fitting to unorganized point clouds [18]. They
used intermediate B-spline surfaces to parameterize the points in
a point cloud and the reconstructed NURBS surface was refined.
A main challenge of fitting NURBS surfaces to point clouds lies
in the proper parameterization of the input points. Several meth-
ods have been proposed to overcome such a difficulty. Bo et al.

[19] fitted a parametric surface to a point cloud by minimizing
the squared orthogonal distance from the surface to point cloud,
thus it becomes a nonlinear least-squares minimization problem.
They use an initial surface to approximate the point cloud, and for
each point, they compute the closest point on the surface. They
kept updating the surface by minimizing a quadratic function until
the fitting error was smaller than a certain threshold.

Some works solved PDE explicitly and applied PDE to surface
reconstruction. Ugail and Kirmani adopted an elliptic PDE equa-
tion and used a set of curves that represented the original shape
as the boundary conditions to solve the PDE equation analytically
[20]. Given that an analytical solution was obtained and applied,
that approach was highly efficient. Rodrigues et al. solved a
Laplace equation explicitly and applied it to 3D data compression
and reconstruction [21].

Implicit surfaces, which use approximation techniques, have
also been utilized to reconstruct smooth surfaces from point clouds.
Poisson surface reconstruction is a typical example of implicit-
based surface reconstruction techniques. Kazhdan et al. computed
a 3D indicator function based on the observation that the indica-
tor gradient was zero except at points near the object surface, and
the value of the indicator function was set to 1 and 0 inside and
outside the 3D object respectively [22]. The reconstructed surface
was obtained by extracting a suitable isosurface. This technique
can behave well even if there is noise in the point set. However,
their method tends to over smooth the reconstructed surface. To
address such problems, Kazhdan et al. modified the Poisson re-
construction algorithm by adding positional and derivative con-
straints [23]. For implicit PDE based 3D reconstruction, Duan et
al. presented a PDE-based deformable surface to evolve its shape
to reconstruct 3D surfaces, where the input data can be either
volumetric data or unorganized point clouds and multi-view 2D
images [24]. Franchini et al. proposed a method to reconstruct
a 3D shape from an unorganized point set by adopting a PDE-
based deformable surface [25]. Their method can also be applied
to Boolean operation between various data. Linz et al. developed
a technique to reconstruct 3D shapes from implicit PDE definition
[26].

Apart from the techniques mentioned above for 3D surface re-
construction from point clouds, with the advancement of neural
networks, several research works have applied neural networks to
mesh reconstruction. At the object level, many methods learned
priors from the dataset [27, 28, 29]. However, these methods do
not generalize well to unseen objects during training since they
learn priors at the object level. To make this technique more
general, Badki et al. proposed to learn local shape (patch-level)
prior of objects for mesh reconstruction [30]. The learned local
shape features serve as a dictionary of local features, and they can
be used to reconstruct 3D shapes even from unseen categories.
Williams used a similar method to learn geometric prior for sur-
face reconstruction [31]. They fit many neural networks in paral-
lel while enforcing global consistency to compute an atlas of mul-
tiple mappings, which can reconstruct complex objects very well.
However, gap or jagged areas may exist because of inconsistent
mapping between different patches. Based on this observation,
Deng et al. proposed a method to achieve global consistency be-
tween local mapping by incorporating consistency of local surface
normal and minimizing a prescribed stitching error [32]. They
also obtained adjacent patches that nearly coincide, a clear indi-
cation of good stitching.

Different from the above works, our proposed surface recon-
struction method is based on a closed-form solution to a fourth-
order partial differential equation and multiple PDE patches de-
fined by the closed-form solution. With our proposed method, a
point cloud with any complex shape can be segmented into some



PDE patch-based surface reconstruction from point clouds 3

(a) Original point cloud data (b) Preprocessing (c) Segmentation

(d) Parameterization (e) Patch fitting (f) Reconstructed surface

Fig. 1. The pipeline of surface reconstruction from point clouds.

subsets, each of which defines a simple shape. One PDE patch is
used to fit the points in each of the segmented subsets, and all ob-
tained PDE patches represent the reconstructed shape defined by
the point cloud.

Since our proposed surface reconstruction method uses a closed-
form solution to a fourth-order PDE, it is faster and more accurate
than existing methods. Specifically, the existing methods focusing
on implicit PDE based reconstruction are inefficient and inaccu-
rate because they involve numerically solving a PDE. Although
some other works have applied explicit PDE based methods to
3D reconstruction, we are unaware of any surface reconstruction
methods, which use analytical 4-sided PDE patches defined by a
closed-form solution to a partial differential equation. In compari-
son with the numerical implicit PDE-based surface reconstruction,
our proposed method relies on analytical solutions, and hence it
is more efficient and accurate. Compared with other explicit PDE
surface reconstruction methods not using analytical 4-sided PDE
patches, our proposed method is more powerful since it can re-
construct more complex shapes.

3. Surface reconstruction pipeline

In our previous work [1], we have used the closed-form so-
lution to a fourth-order partial differential equation to define a
4-sided PDE patch. However, a single 4-sided PDE patch is inca-
pable of reconstructing complicated shapes from point clouds. To
tackle this problem, we will propose a new method of using mul-
tiple 4-sided PDE patches to reconstruct complicated shapes from
point clouds .

Inspired by [33], the general pipeline of our proposed surface
reconstruction method consists of six steps as shown in Fig. 1.
For an input point cloud shown in Fig. 1(a), preprocessing is car-
ried out to change the input point cloud into the one shown in
Fig. 1(b). Then, the preprocessed point cloud in Fig. 1(b) is seg-

mented into some subsets depicted in Fig. 1(c). Next, the points in
each of the subsets are parameterized to obtain their parametric
values in Fig. 1(d). After that, one 4-sided PDE patch in Fig. 1(e)
is used to fit the points in each of the subsets (note that the 3-
sided patch in that figure is a particular case of 4-sided patches).
After fitting the points in all the subsets, a reconstructed 3D shape
Fig. 1(f) consisting of multiple 4-sided PDE patches is obtained.

Point clouds can be obtained by using a scanner or just taking
advantage of open-source data. As indicated by [34], a depth de-
tection device can also be used to obtain the 3D point cloud data
representing a certain object. The obtained point clouds need to
be preprocessed to remove noise and to complete the data, usu-
ally through simplification and compression. There are a lot of
techniques available. Han et al. reviewed the state-of-the-art tech-
niques for filtering point sets [35]. When a point cloud is fitted to
two or more surface patches, the point cloud should be segmented
into some subsets whose number is the same as the number of the
surface patches.

4. Method

In this section, we introduce our proposed PDE-based surface
reconstruction method. First, we present a PDE model for sur-
face reconstruction and obtain its closed-form solution in Sec-
tion 4.1. Then, the segmentation of point clouds is introduced
in Section 4.2. For parametric surface reconstruction, the points
in each of the subsets must be parameterized. We discuss the pa-
rameterization of point clouds in Section 4.3. Having obtained the
parametric values of parametric variables u and v for all the points
in each of the segmented subsets, 4-sided PDE patches are used to
fit these points. The method used to fit the parameterized points
in each of the segmented subsets is described in Section 4.4. After
the parameterized points in all segmented subsets have been fit-
ted, a reconstructed 3D shape consisting of the reconstructed PDE
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patches is obtained.

4.1. PDE model and closed-form solutions

A PDE patch is defined by the solution to a vector-valued partial
differential equation. It can be regarded as a parametric surface
involving two variables, denoted as u and v. Generally, both u
and v are defined on the interval [0, 1], forming four boundaries
of a 3D surface patch. Similar to our previous work in [1], the
vector-valued partial differential equation we consider is:

a1
∂4X(u, v)

∂u4 + a2
∂4X(u, v)

∂v4 = F(u, v) (1)

where a1, a2, X(u, v), and F(u, v) are three-dimensional vectors
containing x, y and z components. Note that in this paper vectors
are denoted in bold. To simplify the notation in the paper, the
following mathematical operations are defined:

f′′′′(u) = d4f(u)
du4 g′′′′(v) = d4g(v)

dv4

ea1 = [ea1x , ea1y , ea1z ] a1a2 = [a1xa2x, a1ya2y, a1za2z]
T

a1

a2
=

[
a1x
a2x

,
a1y

a2y
,

a1z
a2z

]T
n

√
a1

a2
=

[
n

√
a1x
a2x

, n

√
a1y

a2y
, n

√
a1z
a2z

]T (2)

In the future, we will investigate how to use a general expres-
sion for F(u, v) in order to make PDE patch-based surface recon-
struction more powerful. In this paper, we set F(u, v) to 0, which
makes Eq. (1) homogeneous. In that case, we can use the method
of separation of variables to derive its four closed-form solutions.
Assuming that the variables u, v in Eq. (1) are separable, X(u, v)
be expressed as follows:
X(u, v) = f(u)g(v) (3)

Substituting Eq.(3) back to Eq. (1), we get:

a1g(v) d4f(u)
du4 + a2f(u) d4g(v)

dv4 = 0⇒
a1f′′′′(u) 1

f(u) = −a2g′′′′(v) 1
g(v)

(4)

By setting both sides in Eq. (4) to c0, which is a vector-valued
constant, We get Eq. (5):

a1f′′′′(u)
1

f(u)
= −a2g′′′′(v)

1
g(v)

= c0 (5)

With the above treatment, the partial differential equation in
Eq. (1) is transformed into two ordinary differential equations
given in Eq. (5). The first ordinary differential equation is:
a1f′′′′(u) = c0f(u) (6)

From Eq. (6), we know that f(u) can be taken to be:
f(u) = eru (7)
From the above equation, we obtain the fourth-order derivative of
f(u) as:
f′′′′(u) = r4eru

Substituting the expressions of f(u) and f′′′′(u) into Eq. (6),
we obtain:
a1r4eru = c0eru (8)

From Eq. (8), we obtain:
r4 =

c0

a1
(9)

To solve Eq. (9) for r two cases should be considered. The
first case is

c0

a1
> 0 and the second case is

c0

a1
< 0, where the

inequalities must be understood as component-wise.

For the first case,
c0

a1
> 0, we have

c0

a1
=

∣∣∣∣ c0

a1

∣∣∣∣ > 0. To simplify

mathematical notations, we let:

q1 = 4

√
c0

a1
= 4

√∣∣∣∣ c0

a1

∣∣∣∣
Now we can obtain the four roots of Eq. (9) as follows:

r1 = q1, r2 = −q1, r3 = iq1, r4 = −iq1 (10)
where i2 = −1. Substituting Eq. (10) back to Eq. (7), we obtain

f(u) as follows:
f(u) = c1eq1u + c2e−q1u + c3cos(q1u) + c4sin(q1u) (11)
where c1, c2, c3, c4, are vector-valued constants.

For the second case,
c0

a1
< 0,we let:

q2 =

√
2

2
4

√∣∣∣∣ c0

a1

∣∣∣∣ =
√

2
2

q1

We can also obtain the four roots of Eq. (8) as follows:
r1 = q2(1+ i), r2 = −q2(1+ i), r3 = q2(1− i), r4 = −q2(1− i)

In such a case, f(u) can be expressed as follows:
f(u) = eq2u [c1cos(q2u) + c2sin(q2u)] +

e−q2u [c3cos(q2u) + c4sin(q2u)] (12)

The second ordinary differential equation given in Eq. (5) can
be written as:
−a2g′′′′(v) = c0g(v) (13)

We can use the same method as solving f(u) to obtain the so-

lution of g(v) for the two cases:
c0

a2
> 0 and

c0

a2
< 0.

For the first case,
c0

a2
> 0, we let:

q3 = 4

√∣∣∣∣ c0

a2

∣∣∣∣
We can get the solution of g(v) below:

g(v) = c5eq3v + c6e−q3v + c7cos(q3v) + c8sin(q3v) (14)
where c5, c6, c7, c8 are vector-valued constants.

For the second case,
c0

a2
< 0, we define:

q4 =

√
2

2
4

√∣∣∣∣ c0

a2

∣∣∣∣ =
√

2
2

q3

Under such a case, we obtain the expression of g(v) as follows:

g(v) = eq4v [c5cos(q4v) + c6sin(q4v)] +
e−q4v [c7cos(q4v) + c8sin(qq4v)] (15)

Since f(u) and g(v) both have two forms, which are Eq. (11)
and Eq. (12) for f(u) and Eq. (14) with Eq. (15) for g(v), they can
be substituted into Eq. (3) to obtain four solutions of X(u, v) =
f(u)g(v). We use X1(u, v), X2(u, v), X3(u, v), and X4(u, v), to
denote the four solutions, which are obtained below.

Multiplying Eq. (11) with Eq. (14), we get X1(u, v) below:

X1(u, v) = [c1eq1u + c2e−q1u + c3cos(q1u) + c4sin(q1u)]
[c5eq3v + c6e−q3v + c7cos(q3v) + c8sin(q3v)]

(16)
Multiplying Eq. (11) with Eq. (15), we get X2(u, v) below:

X2(u, v) = [c1eq1u + c2e−q1u + c3cos(q1u) + c4sin(q1u)]
(eq2u [c1cos(q2u) + c2sin(q2u)] +
e−q2u [c3cos(q2u) + c4sin(q2u)])

(17)
Multiplying Eq. (12) with Eq. (14), we get X3(u, v) below:

X3(u, v) = (eq2u [c1cos(q2u) + c2sin(q2u)] +
e−q2u [c3cos(q2u) + c4sin(q2u)])
[c5eq3v + c6e−q3v + c7cos(q3v) + c8sin(q3v)]

(18)
Multiplying Eq. (12) with Eq. (15), we get X4(u, v) below:

X4(u, v) = (eq2u [c1cos(q2u) + c2sin(q2u)] +
e−q2u [c3cos(q2u) + c4sin(q2u)])
(eq4v [c5cos(q4v) + c6sin(q4v)] +
e−q4v [c7cos(q4v) + c8sin(q4v)])

(19)

Each of the above four solutions can be used to define 4-sided
PDE patches for surface reconstruction. In this paper, X4(u, v) is
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(a) (b)

Fig. 2. Segmentation of a point cloud of the umbrella example: (a) Original point set; (b) segmented point
subsets.

adopted to reconstruct 3D surfaces from point clouds.
Conducting the multiplication operation in Eq. (19) and let-

ting:

f1(u, v) = eq2ueq4vcos(q2u)cos(q4v)
f2(u, v) = eq2ueq4vcos(q2u)sin(q4v)
f3(u, v) = eq2ueq4vsin(q2u)cos(q4v)
f4(u, v) = eq2ueq4vsin(q2u)sin(q4v)
f5(u, v) = eq2ue−q4vcos(q2u)cos(q4v)
f6(u, v) = eq2ue−q4vcos(q2u)sin(q4v)
f7(u, v) = eq2ue−q4vsin(q2u)cos(q4v)
f8(u, v) = eq2ue−q4vsin(q2u)sin(q4v)
f9(u, v) = e−q2ueq4vcos(q2u)cos(q4v)
f10(u, v) = e−q2ueq4vcos(q2u)sin(q4v)
f11(u, v) = e−q2ueq4vsin(q2u)cos(q4v)
f12(u, v) = e−q2ueq4vsin(q2u)sin(q4v)
f13(u, v) = e−q2ue−q4vcos(q2u)cos(q4v)
f14(u, v) = e−q2ue−q4vcos(q2u)sin(q4v)
f15(u, v) = e−q2ue−q4vsin(q2u)cos(q4v)
f16(u, v) = e−q2ue−q4vsin(q2u)sin(q4v)

(20)

Eq. (19) can be transformed into:

X(u, v) =
16

∑
j=1

djfj(u, v) (21)

where dj, (j = 1, . . . , 16) are the vector-valued unknowns. Note
that X(u, v) in Eq. (21) is a parametric surface, which defines a 4-
sided PDE patch. We discuss how to determine the unknowns dj,
(j = 1, . . . , 16) in the following subsection.

4.2. Segmentation of point cloud

Like mesh segmentation, there are also a lot of works focusing
on the segmentation of point clouds. The existing point cloud seg-
mentation methods can be classified into three categories: seman-
tic segmentation, instance segmentation, and part segmentation
[36]. Deep learning has also been introduced into point cloud
segmentation. One of the most commonly adopted methods is
applying different neural networks to part segmentation of point
clouds. For example, PointNet is a very popular neural network
architecture, which applies a specialized deep neural network to
point clouds for several tasks, including object classification and
part segmentation [37]. Later work also proposed many methods

to improve the performance of part segmentation of point clouds.
The graph convolution is one of the most used neural network ar-
chitectures. Please refer to [38] for a comprehensive review of
deep learning-based 3D segmentation.

The above methods have a problem when they are used to
segment a point cloud into some subsets. The problem is that
the boundaries between two reconstructed patches are not very
smooth because the points in the regions around the boundaries
are sparse and irregular. To tackle such a problem, the method of
edge detection of point clouds could be an effective tool. For in-
stance, Bazazian proposed a weakly supervised learning approach
to detect the edges of point clouds [39].

A simple feasible strategy to reconstruct PDE-based surfaces
patch by patch using our proposed method is to use any of the ex-
isting methods reviewed in [38] to segment a point cloud into sev-
eral subsets. When the shapes defined by the points in some seg-
mented subsets are too complicated, it is necessary to split these
segmented subsets obtained from existing methods into smaller
subsets. Using this procedure (usually called segmentation refine-
ment), we can obtain a reconstructed shape of high quality.

We will reconstruct several objects using our proposed PDE-
based method, including sphere, cylinder, umbrella, and table.
The point clouds of these objects will be segmented automati-
cally or manually into some subsets. Specifically, the point sets
of the sphere and the cylinder can be segmented into several sub-
sets automatically based on the coordinates of the point sets. As
for the point set of the table, which are composed of planes, an
automatic method can also be applied to obtain several subsets
(planes), which will be introduced in detail in the experimental
section. Lastly, we perform segmentation of the point set of the
umbrella using a software called ‘CloudCompare’. However, it is
also possible to perform automatic segmentation of this point set
using more sophisticated techniques. This will be part of our fu-
ture work in the field. Fig. 2 shows the original point cloud and
the segmented result of an umbrella that we will reconstruct later.
The points in each of the subsets will be parameterized, and our
proposed PDE-based reconstruction method will be applied to re-
construct a PDE patch by fitting these points. The parameteriza-
tion of point clouds and the fitting process will be described in
detail in the following subsections.



6 PDE patch-based surface reconstruction from point clouds

(a)
(b) (c)

Fig. 3. Parameterization of points in a subset: (a) Fitting plane. (b) Projecting points to a u− v plane. (c) Aligned
projected points with u and v directions.

4.3. Point cloud parameterization

Proper parameterization of point clouds has a big impact on fi-
nal reconstruction quality. Various parameterization methods have
been proposed in the literature. Ma and Kruth introduced com-
monly used methods of parameterization of point sets for B-spline
and NURBS surfaces, including uniform parameterization, cumu-
lative chord length parameterization, centripetal parameterization
and base surface parameterization [40]. The first three methods
are more suitable for a point set with a regular pattern, but when
a point set is scattered, the last approach may be a better choice.
Other approaches for data parameterization can be found, for in-
stance, in [41, 42].

In this work, we apply different parameterization methods to
different types of models. For relatively simple geometry primi-
tives such as a sphere and a cylinder, since they have an analytical
representation, we use their parametric mathematical equations
to achieve their parameterization. For example, a sphere can be
parameterized with two angles in a spherical coordinate system,
which can be normalized to get the parametric values of para-
metric variables u and v on the unit interval for the points on
the sphere. Since the points on a whole sphere cannot be recon-
structed with a single PDE patch, we first segment the point cloud
defining a sphere into two equal subsets, which can readily be
done automatically. However, in our experiments we found that
the points in the two subsets still cannot be well reconstructed by
two PDE patches. Therefore, we further segment the sphere into
four equal subsets or eight equal subsets. We also found that the
former option is preferable since four subsets lead to good recon-
struction quality and the number of the design variables for four
subsets is half of that for eight subsets. Finally, we parameter-
ize the points in each of the four subsets in a spherical coordinate
system to obtain their u and v parametric values.

A cylinder also has a parametric mathematical expression. Sim-
ilar to the parameterization of a sphere, we segment the point
cloud defining a cylinder into 2 subsets. For the points in each
of the two subsets, we obtain the parametric values of two para-
metric variables u and v from the two variables angle and height
defining the points in each of the two subsets.

The third model we reconstruct is a table that is completely
composed of planes. Segmenting the table into planes can also be
done automatically. The details of the automatic segmentation of
the table will be given in Section 5. For each segmented plane, it
can be regarded as a u− v plane. Normalizing the coordinate of
the points on every plane would give us the parametric values of
the parametric variables u and v for each point on the segmented
plane. Then, the points on each of the planes are used to recon-
struct a PDE patch. Combining all the reconstructed PDE patches

generates the final reconstructed 3D shape of the table.
Finally, an umbrella is also reconstructed. The point set is

firstly segmented into eight equal subsets, as shown in Fig. 2. For
the points in each of the segmented subsets, we find a plane that
best fits the point set, as shown in Fig. 3(a). Then the 3D points
in the subset are projected onto the plane, which can also be re-
garded as a u− v plane. Since the principal component analysis
(PCA) axes of the projected points on the u− v plane do not align
with the u and v directions as shown in Fig. 3(b), we apply a ro-
tation transformation to the projected points to make their PCA
axes aligning with the u and v directions as shown in Fig. 3(c).
Finally, normalizing operations are applied to the points on the
u− v plane to obtain the parametric values of the points in each
of the segmented subsets.

4.4. Fitting

After parameterizing the points in each of the segmented sub-
sets, we obtained their parametric values un and vn for each point
Xn in the subsets. Then we fit the PDE patch to the points. As dis-
cussed above, applying our developed PDE patch to surface recon-
struction from point clouds requires to find the 16 vector-valued
unknowns dj, (j = 1, 2, 3, . . . , 16) so that the PDE patch X(u, v)
will best approximate the points in the subset.

If there are N points Xn (n = 1, 2, 3, . . . , N) in a subset to
be reconstructed by one PDE patch X(u, v), the squared sum of
the errors between the known points Xn and the unknown points
X(un, vn) can be determined with the following equation:

E =
N

∑
n=1

[X(un, vn)− Xn]
2 =

N

∑
n=1

[
16

∑
j=1

djfj(un, vn)− Xn

]2

(22)

To minimize the error E and find the 16 vector-valued un-
knowns, we apply the method of least squares, given by the fol-
lowing equation:
∂E
∂dk

= 0 (k = 1, 2, 3, . . . , 16) (23)

Substituting Eq. (22) into Eq. (23), the following system of
equations is obtained:
16

∑
j=1

dj

N

∑
n=1

fj(un, vn)fk(un, vn) =
N

∑
n=1

Xnfk(un, vn) (24)

for k = 1, 2, 3, . . . , 16. Therefore, there are 16 equations in Equa-
tion (24) that must be solved to find the 16 vector-valued un-
knowns dk (k = 1, . . . , 16).

Note that in Eq. (24), fj(un, vn) and fk(un, vn) involve the con-
stants q2 and q4, which can be treated as two design variables
and optimized to obtain the optimal PDE patch which best fits the
points Xn (n = 1, . . . , N). However, Eq. (8) would become non-
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(a) (b) (c) (d) (e)

Fig. 4. PDE-based reconstruction from the point cloud of a sphere: (a) Segmented point cloud of a sphere. (b)
Projecting the points in a subset to a u− v plane. (c) Reconstructed shape with small overlaps consisting of four
PDE patches without adding points in the regions around boundaries. (d) The points in a subset after adding
points to the regions around boundaries. (e) The final result without overlaps obtained by adding points to the
regions around boundaries.

(a) (b) (c) (d) (e)

Fig. 5. PDE -based reconstruction from the point cloud of a cylinder: (a) Segmented point cloud of a cylinder.
(b) Projecting the points in a subset to a u− v plane. (c) Reconstructed shape with small overlaps consisting of
two PDE patches without adding points in the regions around boundaries. (d) The points in a subset after adding
points to the regions around boundaries. (e) The final result without overlaps obtained by adding points to the
regions around boundaries.

linear if we treat q2 and q4 as design variables, which makes it
more difficult to find the 16 vector-valued unknowns dk. Owing
to this fact, in this paper we treat q2 and q4 as two constants and
set q2 = q4 = 0.1, which provides good results in all our experi-
ments.

5. Results

5.1. Experiments and results

For the points in each of the subsets obtained from segment-
ing a point cloud, we use Eq. (21) to reconstruct a PDE patch
X(u, v). After the points in all the subsets have been used to re-
construct PDE patches, the reconstructed 3D shape consisting of
the reconstructed PDE patches is obtained. In what follows, we
present some examples to illustrate this process.

The first example is to reconstruct a sphere from its point cloud.
As discussed above, the point cloud describing a sphere is seg-
mented into four subsets as shown in Fig. 4(a). For the points
in each of the four subsets, Eq. (21) is used to reconstruct one
PDE patch from the points. To do this, the points in the subset
are projected to a u − v plane as shown in Fig. 4(b). After the
four PDE patches have been reconstructed, they are automatically
connected together to represent the reconstructed shape from the
point cloud. However, we found that the reconstructed patches
have small overlaps between two PDE patches such as those be-
tween the grey and red patches and between the green and blue
patches as shown in Fig. 4(c). To address this problem, we in-
crease the number of the points around boundaries by first upsam-

pling the original point cloud, then keeping the points around the
boundaries using a self-defined filter based on the coordinates of
the point cloud, and finally combining them with the original point
cloud. Fig. 4(d) shows the points in one subset after increasing the
number of the points in the regions around boundaries. With this
treatment, we obtain the reconstructed shape shown in Fig. 4(e),
which indicates that the small overlaps have been removed and a
good reconstruction result has been obtained.

The second example is to reconstruct a cylinder from its point
cloud. As discussed in Section 4.2, the point cloud has been seg-
mented into two equal subsets as shown in Fig. 5(a). Then, the
points in each of the subsets are projected to a u− v plane shown
in Fig. 5(b). After using Eq. (21) to reconstruct the two PDE
patches shown in Fig. 5(c), small overlaps occur again. With the
same treatment as discussed above, we add more points in the
regions around the boundaries between the two PDE patches as
shown in Fig. 5(d). By adding new points, the small overlaps dis-
appear as shown by the two reconstructed PDE patches depicted
in Fig. 5(e).

The third example is to reconstruct a table from its point cloud.
The points in the point cloud of a table are on some planes. This
example is used to demonstrate that our proposed PDE-based method
can be used to reconstruct not only 3D shapes consisting of curved
surfaces but also 3D shapes consisting of flat planes or a combina-
tion of curved surfaces and flat planes.

Even though a plane seems to be a simple primitive, plane de-
tection and reconstruction is important in many fields such as
robotic perception and image processing. For example, robots
need to detect ground where it is safe to walk, as well as the walls
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 6. PDE-based reconstruction from the point cloud of a table (left-right,top-bottom): (a) Point cloud of a table.
(b) Segmenting the point cloud of the table into a top part and a bottom part. (c) Using the K-means clustering
algorithm to segment the bottom part into four subparts. (d) Using the RANSAC algorithm to segment each of the
subparts into six subsets. (e) Reconstructed shape with small gaps between two adjacent PDE patches. (f) Points
in a subset after adding points to the regions around boundaries. (g) The final result without gaps obtained by
adding points to the regions around boundaries.

(a) (b)

Fig. 7. (a) Reconstructed umbrella; (b) Final result after post-processing.

and other artificial (and mostly linear and flattened) areas for col-
lision avoidance.

For a point cloud of this type, no manual segmentation is needed.
Usually, it takes three steps to segment a point cloud. In the first
step, we segment the point cloud in Fig. 6(a) of the table into the
top part and leg part shown in Fig. 6(b) using the part segmenta-
tion algorithm of point clouds as we introduced in Section 4.2.

Then in the second step, we use a K-means clustering algorithm
to the leg part and change it into four subparts shown in Fig. 6(c).
Each subpart represents a leg. Finally, in the third step, we use

a plane detection algorithm called RANSAC, which is a state-of-
the-art plane detector, from Point Cloud Library (PCL) to segment
each of the four subparts into six subsets, which are six planes of
a leg. With this treatment, the points in each of the subparts are
segmented into those in the six subsets (planes) of a leg as shown
in Fig. 6(d).

For the points in each of the segmented subsets, we reconstruct
a PDE patch by applying our developed PDE-based reconstruction
method. Fig. 6(e) shows the reconstructed PDE patches from the
point cloud of the table. It can be observed that there are very
small gaps between reconstructed PDE patches. To tackle this
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(a) (b) (c) (d) (e)

Fig. 8. 3D shapes reconstructed using the Poisson surface reconstruction technique: (a) Reconstructed sphere;
(b) Reconstructed cylinder; (c) Reconstructed umbrella; (d) Reconstructed table; (e) Close view of a leg of the
reconstructed table.

Table 1
Number of the design variables needed by our proposed PDE-based method and the polygon-based method to
reconstruct 3D shapes from different point clouds.

Sphere Cylinder Table Umbrella

Polygon-based 726 192
45, 279 (using Poisson technique)

86, 613
120 (Modeling by software)

PDE-based 192 96 1080 384

problem, we add more points in the regions around the bound-
aries. Fig. 6(f) shows the result of adding more points in the
regions around the boundaries of a plane. The final result after
adding more points is shown in Fig. 6(g), which removes the gaps
and is of good quality.

The last example is to reconstruct an umbrella from its point
cloud. As discussed in Section 4.2, the point cloud of the um-
brella is segmented into eight subsets. The points in each of the
eight subsets are projected to a u− v plane. Since the projected
points do not fill the top left region and the top right region as
shown in Fig. 3(c), trimming the reconstructed PDE patch corre-
sponding to the two regions is necessary. We use the boundaries of
the obtained subsets to trim the reconstructed PDE-based patches.
Fig. 7(a) shows the reconstructed umbrella after trimming the re-
constructed PDE patches. As we can see, there are some very small
gaps. This problem can be addressed by sampling more points in
the regions around the boundaries of subsets. In this example,
we manually eliminate the gaps and obtain the result shown in
Fig. 7(b).

5.2. Comparison with a polygon-based method

To illustrate the advantages of our proposed PDE-based sur-
face reconstruction technique, we also reconstruct polygon sur-
faces from the same point clouds used in this paper by applying a
widely adopted method called Poisson surface reconstruction that
was briefly mentioned in Section 2. The main aspect we con-
sider is the number of variables needed to reconstruct the same
3D shape while keeping the reconstructed surface with high qual-
ity. The errors between the surface defined by the original points
set and the reconstructed surfaces, including the PDE surface and
the polygon surface are calculated to demonstrate the quality of
the result. Specifically, for the error between the surface defined
by the original point set and the reconstructed PDE surface, we

calculate it through the following equations:

ErrM =
1
N

N

∑
n=1
|Xn − X(un, vn)|

ErrD =

√√√√ 1
N

N

∑
n=1

(∣∣∣|Xn − X(un, vn)| − ErrM

∣∣∣)2
(25)

where ErrM indicates the average error between the two surfaces,
ErrD stands for the standard deviation of the errors regarding all
corresponding points, and |.| indicates the Eucidean distance be-
tween two points (vectors). For the error between the surface and
the reconstructed polygon surface, we take advantage of a tool in
a point cloud processing software called CloudCompare and the
tool is designed to calculate the difference between two surfaces.

Fig. 8 shows the polygon surfaces reconstructed from the point
cloud of the sphere, cylinder, table and umbrella, which we used
to reconstruct PDE patches in the above subsection.

Comparing the reconstructed shapes shown in Fig. 8 obtained
from the Poisson surface reconstruction algorithm with those ob-
tained with our proposed PDE-based method, it is clear that our
proposed PDE-based method has better quality of reconstructed
3D shapes.

Table 1 gives the number of the design variables required by
the polygon-based method and PDE-based method to reconstruct
different 3D shapes. We can see that for the point clouds defining
3D shapes with curved surfaces, our proposed PDE-based surface
reconstruction method requires much fewer design variables than
the polygon-based method.

To demonstrate the quality of the reconstructed surface, we
use the polygon-based method to reconstruct the 3D shapes in Ta-
ble 1 to make their vertex number roughly the same as the number
of variables needed in corresponding PDE-based surface, thus the
number of variables needed to represent the same 3D shape would
be roughly the same. Table 2 shows the number of variables re-
quired to represent various 3D shapes for both the polygon-based
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Table 2
Number of variables required to represent different 3D shape for polygon-based method and proposed PDE-based
method after simplification of the reconstructed polygon mesh.

Sphere Cylinder Table Umbrella

Polygon-based 74× 3 = 222 32× 3 = 96 377× 3 = 1131 184× 3 = 552

PDE-based 192 96 1080 384

Table 3
The mean error and its deviation after simplification between the surface defined by different point clouds and
the reconstructed PDE surface and the polygon surface respectively (a/b: a refers to the mean error, b refers to
the deviation).

Sphere Cylinder Table Umbrella

Polygon-based 0.0091/0.0099 0.0045/0.0071 01083/0.3961 0.0120/0.0613

PDE-based 0.0026/0.0055 0.0029/0.0062 9.0× 10−6/1.9× 10−5 0.0045/0.0094

method and our proposed PDE-based method after simplifying the
reconstructed polygon mesh.

Then we calculated the average error and its standard devia-
tion between the surface defined by the original point set and the
reconstructed surfaces. Table 3 shows the results and we can see
that both the mean error and the standard deviation between the
PDE surface and original point set is smaller than that between the
polygon surface and the original point set. In conclusion, our pro-
posed PDE-based surface reconstruction method from point cloud
outperforms a classical polygon-based surface reconstruction tech-
nique from point cloud regarding the number of variables and the
quality of the output 3D shape.

6. Conclusions

In this paper, we develop a new method to reconstruct 3D
shapes from point clouds with multiple PDE patches. Each PDE
patch is based on an explicit closed-form solution to a vector-
valued fourth-order partial differential equation, which is efficient
and accurate due to the feature of analytical closed-form solutions
of the obtained mathematical expressions. In comparison with
the polygon-based method, our proposed PDE-based surface re-
construction method involves much fewer design variables. Since
multiple PDE patches are used in reconstructing 3D shapes from
point clouds, many complex shapes can be reconstructed with our
proposed PDE-based method. By adding more points in the re-
gions around the boundaries shared by two PDE patches, good
positional continuity can be obtained by the method proposed in
this paper, which avoids the postprocessing of reconstructed sur-
faces.

Regarding future work, there are several directions that have
not been examined in this paper. We will investigate them in
our forthcoming work. First, the problem of overlaps and gaps
in the regions around the boundaries between two PDE patches
are treated by adding more points in the regions. More effective
methods should be developed to solve this problem.

Second, how parameters q2 and q4 involved in the mathemati-
cal expressions of PDE patches influence quality, efficiency, and ca-
pacity has not been investigated in this paper. They can be treated
as two design variables and optimized to determine their optimal
value.

The method proposed in this paper is used to reconstruct 3D
shapes from point clouds. Shape reconstruction from images is
another important topic. We will extend the method proposed in
this paper to reconstruct 3D shapes from a single image or multiple
images in our following work.

Surface reconstruction is to recreate surfaces from a given point
cloud within the shortest possible time and with given quality cri-
teria. In this regard, machine learning has been applied to shape
reconstruction due to its ability in producing good results without
restrictions on point cloud size and points’ order as well as the ca-
pacity in generating meshes from a small number of point samples
in an unorganized point cloud. In the future, we will combine our
proposed PDE-based method with machine learning to develop a
new PDE patch and machine learning-based shape reconstruction
method.
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