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Abstract: Ant Colony Optimization (ACO) encompasses a family of metaheuristics inspired by the
foraging behaviour of ants. Since the introduction of the first ACO algorithm, called Ant System (AS),
several ACO variants have been proposed in the literature. Owing to their superior performance
over other alternatives, the most popular ACO algorithms are Rank-based Ant System (ASRank), Max-
Min Ant System (MMAS) and Ant Colony System (ACS). While ASRank shows a fast convergence
to high-quality solutions, its performance is improved by other more widely used ACO variants
such as MMAS and ACS, which are currently considered the state-of-the-art ACO algorithms for
static combinatorial optimization problems. With the purpose of diversifying the search process
and avoiding early convergence to a local optimal, the proposed approach extends ASRank with
an originality reinforcement strategy of the top-ranked solutions and a pheromone smoothing
mechanism that is triggered before the algorithm reaches stagnation. The approach is tested on
several symmetric and asymmetric Traveling Salesman Problem and Sequential Ordering Problem
instances from TSPLIB benchmark. Our experimental results show that the proposed method
achieves fast convergence to high-quality solutions and outperforms the current state-of-the-art ACO
algorithms ASRank, MMAS and ACS, for most instances of the benchmark.

Keywords: ant colony optimization; metaheuristics; pheromone smoothing; originality reinforcement;
combinatorial optimization

1. Introduction
1.1. Motivation

During the last few decades, many artificial intelligence-based optimization methods
have been introduced, mostly aimed at solving problems that were either intractable or
very complex to deal with using traditional mathematical optimization techniques. Most
of such methods are typically labelled as metaheuristics, a global concept encompassing
many different high-level procedures to assist partial search algorithms to find a good
solution to a challenging optimization problem, often in NP-hard problems or scenarios
where only incomplete information about the problem is commonly available. Some of the
first metaheuristics were proposed to enhance local search algorithms (e.g., tabu search,
scatter search, simulated annealing, guided local search, stochastic local search, VNS,
GRASP, and many others). Shortly afterwards, sophisticated nature-inspired population-
based metaheuristics for global search were also introduced. Popular families of such
methods include evolutionary algorithms (e.g., genetic algorithms, genetic programming,
evolutionary programming; see [1,2]) and swarm intelligence methods (e.g., particle swarm
optimization, differential evolution, ant colony optimization, artificial bee colony, bat
algorithm, firefly algorithm, cuckoo search algorithm, and many others; see [3,4]), to
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mention just a few. The interested reader is referred to the handbooks of metaheuristics
in [5–7] and references within for a general overview of the field and its applications to
hard optimization problems.

One of the most popular metaheuristics is Ant Colony Optimization (ACO). Rather
than a single method, ACO consists of a family of metaheuristics inspired by the foraging
activity of natural ants, capable of finding the shortest path between a food source and their
nest through a pheromone deposit mechanism. ACO metaheuristics guide their search
through the solution space of combinatorial optimization problems using a problem-specific
heuristic and the information saved in the pheromone table, which is learned by means of
the reinforcement of the pheromone values corresponding to the best decisions in previous
iterations of the algorithm.

The first ant colony-based algorithm, called Ant System (AS) [8,9], was originally
applied to solve the Traveling Salesman Problem (TSP): finding the shortest closed loop
that traverses once a group of cities. Since the introduction of AS, several ACO algorithms
have been proposed. Among them, three algorithms stand out owing to their superior
performance and, as a result, for being the most often used ACO algorithms: the Rank-
based Ant System (ASRank) [10], Max-Min Ant System (MMAS) [11] and Ant Colony System
(ACS) [12]. All ACO algorithms guide their search through the solution space by means of
a probabilistic decision method that combines the information given by the heuristic and
the pheromones. However, ACO algorithms may differ in the rules defined to update the
pheromone trails or the different transition rules that combine the heuristic and pheromone
information. Additionally, more recent metaheuristics combine ACO with other techniques,
for instance, Best-Worst Ant System (BWAS) [13], integrates several components from
Evolutionary Computation. Nevertheless, the ACO algorithms (MMAS and ACS) are by far
more popular than hybrid methods and are used in a variety of combinatorial optimization
problems [14–16].

The reinforcement of previous best decisions by means of pheromone deposit mech-
anism enables ACO algorithms to focus the search on promising regions of the search
space, making it possible to find high-quality solutions for high-complexity problems in a
reasonable computational time. However, the pheromone reinforcement is also responsible
for stagnation, an undesirable situation where the algorithm becomes stuck in local minima,
preventing the possibility of finding a better solution.

A distinctive feature of AS extensions (such as ASRank, MMAS and ACS) is that they
direct the ant’s search in a more aggressive way than AS, exploiting more strongly the
best solutions found during the ants’ search [14,17]. This stronger exploitation of the
search experience may promote early stagnation situations. Thus, some AS extensions,
in particular, MMAS and ACS, introduce additional features to avoid search stagnation
(e.g., pheromone limits in MMAS) [18]. However, Rank-based AS generally obtains slightly
worse performance than ACS and MMAS [14].

Figure 1 shows the fitness evolution of the tour length of the best-ant tour found
by ACO algorithms versus the number of ant tours constructed for a particular instance
of TSP called gr48. Although the behaviour of ACO algorithms also depends on the
parameter settings, comparative studies usually draw similar conclusions as the ones that
can be extracted from Figure 1. The ACO extensions (ASRank, MMAS and ACS) have the
advantage of showing better performance than the original ACO algorithm, Ant System.
The best-performing variants usually are MMAS and ACS, closely followed by ASRank.
Regarding the performance of ACS, its local pheromone update rule (which applies the
evaporation mechanism only to the traversed arcs) has the advantage of preventing ACS
from reaching a stagnation situation, and the disadvantage that it precludes the parallel
implementation of the construction loop of the ant tours. An advantage of ACS is that
it returns the best solution quality for very short computation times, as happens in the
instance shown in Figure 1. Differently, as it can be observed in Figure 1, MMAS has the
disadvantage of initially producing rather poor solutions, but the advantage of producing
solutions whose quality is often the best among the ACO extensions [14]. Lastly, ASRank
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has the advantage of showing better results than MMAS in the initial iterations, but it
usually ends in stagnation situations, obtaining slightly worse performance than ACS and
MMAS. This early stagnation behaviour suggests that ASRank could profit from strategies
that diversify the search [11,14]. Consequently, the good results of ASRank during the
first iterations and its trend to quickly fall in stagnation situations have motivated the
present work.

Figure 1. Evolutionary curves of ACO algorithms (AS, ASRank, MMAS and ACS) for TSP instance gr48.

1.2. Aims and Structure of This Paper

In this work, we aim at improving the performance of ASRank algorithm for com-
binatorial optimization problems. Based on the observations described in the previous
paragraphs, this paper proposes an extended version of ASRank, which includes two diver-
sification strategies:

1. an originality reinforcement strategy that rewards the originality (dissimilarity from
already searched space) of the solutions with good fitness; and

2. a pheromone smoothing mechanism that is triggered before the algorithm reaches
stagnation, increasing exploration and making possible it to find better solutions.

This new ACO algorithm, called ASps
ORank, will be compared with the state-of-the-art

ACO algorithms using several instances of the popular TSPLIB95 benchmark. Since our
main interest is at improving the state-of-the-art ACO algorithms, in this paper we will
focus our comparative work on the best ACO algorithms exclusively. Consequently, we
will restrict our analysis to ACO algorithms without any addition of external methods, such
as local search procedures or hybridization with other metaheuristics. These procedures,
although very promising and potentially successful, would obscure the understanding of
the behavior of our algorithm with technicalities totally unrelated to the core and principles
of the ACO algorithms. The discussion about how to enhance our new ACO algorithm
with local search strategies and/or hybridization with other metaheuristics is out of the
scope of this paper and will be part of our future work in the field (see our discussion in
Section 5 for further details).

The remainder of the paper is organized as follows. Section 2 introduces the ACO
metaheuristics, describing the most important ACO algorithms and presenting an overview
of the current research lines in ACO state-of-the-art. Section 3 describes the proposed Rank-
based Ant System with originality reinforcement and pheromone smoothing.
Section 4 analyses the performance of the proposed ACO algorithm over several TSP
and Sequential Ordering Problem (SOP) instances, and compares it with the best-performer
ACO algorithms in the literature. Finally, Section 5 summarizes the main conclusions of the
work and some futures lines of research.
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2. Ant Colony Optimization

This section introduces the ant colony optimization metaheuristics. First, it describes
the general structure of ACO algorithms, including the first ACO algorithm proposed in
1992 by Dorigo, and its extensions Rank-based Ant System, Max-Min Ant System and Ant
Colony System. Later, it gives a brief overview of the more recent research trends in ACO
metaheuristics. A more detailed review of ACO state of the art can be found in [16,17].

2.1. Ant Colony Optimization Algorithms

ACO metaheuristics formulate the combinatorial optimization problems as finding
the best ant tour (best solution) in a graph G = (C, L) defined by a set of nodes C and arcs
L. For instance, in the TSP problem, each node represents a city and each edge has assigned
the distance between each pair of cities. Hence, the problem is formulated as finding the
closed tour of minimal length that visit once all the nodes in the graph.

ACO metaheuristics are population-based algorithms that at each iteration construct
m ant tours (solutions) combining the information learned in previous iterations with a
problem-specific heuristic. In order to save the information of previous good ant tours,
ACO algorithms use a table that assigns a pheromone value τi,j to each edge in the graph.
These pheromone values are typically initialized with a constant value for all edges, and
later reinforced as the ants with better fitness traverse them. The ant tours are constructed
component by component according to the probabilities determined by the transition rule,
given by Equation (1). This transition rule states the probability pk

i,j that the k-th ant moves
from node i to node j, assigning higher probabilities to the edges with higher pheromone
τi,j and heuristic values ηi,j according to:

pk
i,j =

τα
i,j η

β
i,j

∑l∈Nk
i

τα
i,j η

β
i,j

, j ∈ Nk
i (1)

where α and β are the parameters that control the pheromone and heuristic influence,
respectively, and Nk

i is the feasible neighbourhood of ant k. For instance, in the case
of TSP where the cities (nodes) can only be visited once, Nk

i corresponds to the set of
unvisited cities.

The basic operation mode of an ACO algorithm, summarized in Algorithm 1, is as
follows: at every algorithm iteration, the m artificial ants start their tours from initial nodes
(randomly chosen in TSP) and construct their tours by combining the information of the
heuristic η and the pheromones τ. In this way, at every iteration, m candidate solutions (ant
tours) are constructed, each one having a corresponding fitness value such as the length
of the tour in TSP. Optionally, after the tours of the m ants are completed, a local search
procedure may be considered (for example k-exchange neighbourhood for TSP). Next, a
positive feedback strategy that rewards the best ant tours is implemented by means of the
update of the pheromone table. Finally, when the considered stop criterion is met, the
algorithm returns the best-found tour.

Once every ant has finished its tour (which corresponds to a candidate solution to the
optimization problem), the pheromone update (evaporation and deposit processes) takes
place. In AS, the pheromone update process is given by the following rule:

τi,j = (1− ρ)τi,j +
m

∑
k=1
4τk

i,j , ∀arc(i, j) ∈ L (2)

where the parameter ρ (with 0 < ρ < 1) is the pheromone evaporation parameter, which
controls the rate at which the pheromone is evaporated. The evaporation mechanism affects
all the edges in the graph and helps to avoid the unlimited accumulation of the pheromone
trails. The second term of Equation (2) corresponds to the pheromone deposit of the m
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artificial ants. In AS, all the ants deposit a pheromone quantity4τk
i,j proportional to their

quality in all the arcs belonging to their tour:

4τk
i,j =

{
1/ f (sk), if arc(i,j) ∈ sk
0 otherwise

(3)

where f (sk) is the fitness of the k-th ant tour sk, which in TSP corresponds to the length of
the tour. In general, arcs that are used by many ants and which are contained in shorter
tours will receive higher pheromone deposits and therefore, will more likely be chosen in
the next iterations of ACO.

Algorithm 1 ACO metaheuristic
Require: ACO parameters

τ ← initialise pheromone trails
while termination condition not met do

for k = 1 to m do . for every ant
for every step until the k-th ant has completed the tour do

select node j to visit next according to transition rule . Equation (1)
end for

end for
Apply local search (optional)
Update pheromone trails τ

end while

Since the introduction of AS in [8], several ACO algorithms have been proposed, with
Rank-based Ant System (ASRank) [10], Max-Min Ant System (MMAS) [11] and Ant Colony
System (ACS) [12] standing out. These ACO algorithms differ from AS in the pheromone
update process in Equation (3), with the exception of ACS, which also considers a modified
transition rule given by Equation (6) from the one given by Equation (1).

The pheromone reinforcement enables ACO algorithms to focus the search on promis-
ing regions of the search space allowing them to find high-quality solutions in reasonable
computational time. However, the pheromone reinforcement is also responsible for stag-
nation, an undesirable situation where no better tour is likely to be found anymore. The
stagnation situation happens when at each choice point, the pheromone trail is significantly
higher for one choice than for all the others. In such a situation, the ants construct the
same tours over and over again and the exploration of the search space stops, limiting the
possibility of finding a tour with better fitness. One particularity of AS extensions is that
they direct the ant’s search in a more aggressive way and that their search is focused on a
specific region of the search space [14]. This higher exploitation may, however, induce early
stagnation situations. Thus, AS extensions need to be endowed with features intended to
counteract stagnation (e.g., the pheromone limits in MMAS and local update rule in ACS).
The pheromone update process of the AS extensions, Rank-based AS, MMAS and ACS, are
detailed below.

Rank-based Ant System (ASRank) is an extension of AS proposed by Bullnheimer
et al. [10], which incorporates the idea of ranking to the pheromone update process. Rank-
based AS follows a similar procedure to Algorithm 1, but its pheromone update incor-
porates the idea of ranking of solutions and elitist strategy. While in AS, all ants deposit
pheromones according to Equation (2), in Rank-based AS, only w ants deposit pheromones:
the best tour found so far, sgb, deposits a pheromone quantity proportional to the algo-
rithm parameter w and the (w− 1) best ants of the iteration deposit a pheromone quantity
proportional to their ranking r, as expressed by Equation (4):

τi,j = (1− ρ)τi,j +
w−1

∑
r=1

(w− r)4 τr
i,j + w4 τ

gb
i,j (4)
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where w is a parameter of the algorithm chosen by the user that determines the number
of ants that deposit pheromones, and r corresponds to the ranking of the classification of
the ants according to their fitness (where better fitness is associated with lower ranking).
In Equation (4) , (1− ρ)τi,j accounts for the pheromone evaporation, which is applied to
all pheromone trails. Additionally, the pheromone trails corresponding to the tours of
the (w− 1) best ants of the iteration are reinforced as by a quantity equal to (w− r)4 τr

i,j,
where 4τr

i,j = 1/ f (sr). Finally, the pheromone trails corresponding to the global-best

found solution sgb are reinforced with a quantity equal to w4 τ
gb
i,j , where4τ

gb
i,j = 1/ f (sgb).

Max-Min Ant System (MMAS), proposed by Stüzle and Hoos [11], is one of the best
performing variants of AS [14–16]. In MMAS only one ant is used to update the pheromone
trails at each iteration. Consequently, the modified pheromone update rule is given by

τi,j = (1− ρ)τi,j +4τbest
i,j (5)

where only the arcs traversed by the best ant are reinforced with a pheromone quantity
inversely proportional to the fitness of the best ant tour4τbest

i,j = 1/ f (sbest). Depending on
the MMAS implementation, it can be considered the iteration-best (sib) ant or the global-best
ant (sgb).

Furthermore, MMAS imposes lower and upper limits τmin and τmax on all the pheromone
values in order to avoid stagnation. Hence, at each iteration after the pheromone update
process given by Equation (5) takes place, it is ensured that the pheromone values respects
the limits, i.e., τmin < τi,j < τmax, ∀τi,j. Recommended values for the pheromone trail limits
indicated by [11,14] are τmax = 1/(ρ f (sgb)) and τmin = τmax(1− n

√
0.05)/(0.5n− 1), where

n is the number of cities (nodes) in the graph. These pheromone limits [τmin, τmax] avoid
the situation of strict stagnation (all tours of an iteration being the same). Instead, this
may lead to a situation (convergence of MMAS) where the pheromone values of the arcs
corresponding to the best-found tour have associated a pheromone value equal to τmax,
and the remaining arcs to τmin. In this convergence situation, all the ants do not follow the
same tours (stagnation), but still, the exploration of the search space and the possibility
of finding better solutions during the following iterations is quite limited. As a further
means of increasing the exploration, some MMAS implementations consider occasional
reinitializations of the pheromone trails when the algorithm approaches stagnation or when
no improved tour has been generated for a large number of iterations [11].

Ant Colony System (ACS), proposed by Dorigo and Gambardella [12], is considered,
along with MMAS, the best performing variant of AS [14–16]. ACS implements several
modifications with respect to AS. First, it exploits the experience accumulated by the ants
more strongly than AS does through the use of a more aggressive action choice rule given
by Equation (6):

j =

{
argmaxl∈Nk

i
τil [νil ]

β q ≤ q0

J otherwise
(6)

where q is a random variable uniformly distributed in [0, 1], q0 is an algorithm parameter
(0 < q0 < 1), and J is a random variable selected according to the probability distribution
given by Equation (1) (with α = 1). In this way, the ants select with a probability q0 the
next node j based on the best decision according to the pheromone trails and heuristic
information (the node j with maximum associated probability pk

i,j given by Equation (1)),
while with probability (1− q0), the ants choose the next node according to the probability
distribution pk

i,j given by Equation (1).
Regarding the pheromone update process, at the end of each algorithm iteration, ACS

only applies the pheromone evaporation and reinforcement to those arcs belonging to
best-so-far ant, according to Equation (7):

τi,j = (1− ρ)τi,j +4τ
gb
i,j ∀arc(i, j) ∈ sgb (7)
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where ρ is the pheromone evaporation parameter and4τ
gb
i,j = 1/ f (sgb).

In addition to the global pheromone trail update rule given by Equation (7), that
is applied after the m ant tours are constructed, ACS also considers a local pheromone
update rule that is applied immediately after an ant has crossed an arc(i, j) during the tour
construction, according to Equation (8):

τi,j = (1− ξ)τi,j + ξτ0 (8)

where ξ (0 < ξ < 1) and τ0 are two algorithm parameters. The value τ0 is set to be the same
as the initial value of the pheromone trails.

2.2. Recent Trends in ACO Algorithms

Among ACO scientific literature, three main research lines can be distinguished. On the
one hand, the majority of the state-of-the-art works are clearly focused on the application of
ACO metaheuristics to different and computationally challenging applications and domains,
such as UAV search missions [19], maximizing influence in social networks [20] or in wireless
sensor networks [21]. For more ACO applications, the reader is kindly referred to [17].

On the other hand, there is a challenging research line (in which this work is also
included) that aims to improve ACO metaheuristics through the inclusion of modifica-
tions or mechanisms that aim to diversify the search to promising regions of the search
space while keeping a good balance between diversification/intensification. Within this
research line, we can find several hybrid algorithm proposals that combine ACO with other
techniques. For instance, the Hybrid Ant Colony Optimization Algorithm (HACO, [22])
introduces an operator similar to the mutation operator of the genetic algorithms. Or the
Best-Worst Ant System (BWAS) [13], integrates components inspired by evolutionary com-
putation such as the inclusion of mutations of the pheromone table. The papers in [23,24]
consider the hybridization of ACO with genetic algorithms to solve the supplier selection
and multiple sequence alignment problems, respectively. Additionally, the authors of [25]
consider an annealing ACO with a mutation operator to solve the TSP. Furthermore, BWAS
is hybridized with Particle Swarm Optimization (PSO) ideas in [26] and tested over for
TSP benchmark. Another example of hybridization of ACO and PSO is given in [27],
related to PID parameter optimization on autonomous underwater vehicle control systems.
Other approaches include the hybridization of ACO algorithms with differential evolution
in [28,29] to solve TSP and cancer data classification problems. Additionally, the ACO
metaheuristic proposed in [30] presents a different approach to diversify the solution space
based on combining pairs of searching ants. Lastly, another interesting research line is the
study of parameter adaptation techniques, that is, the variation of ACO parameter settings
while solving an instance of an optimization problem [31].

Finally, a third current line of research concerns the application of the ACO algorithms
to dynamic discrete problems [32]. Some particular features of the ACO algorithms, such
as the pheromone-based memory, have proven to be remarkably successful for static
combinatorial optimization problems, but such features do not seem to be so favorable
for dynamic problems, where some parts of the problem can change at runtime without
previous knowledge [33]. In such cases, if the ACO algorithm has achieved convergence
to a confined region of the search space which becomes irrelevant after the change in
the problem, the algorithm can find it difficult to efficiently escape from that region and
adapt its memory structure to the new problem change. As a way to overcome such a
limitation, a method called P-ACO has been proposed to optimize the reuse of pheromone
information after the problem changes [34]. Other alternative methods are based on the
use of immigrant schemes for dynamic problems [35,36]. A very recent paper considers
the role of parameter setting and the use of enhanced hybridization with local search
procedures [37]. The results in [37] show that the hybridization of MMAS (one of the best
ACO performers for static problems) with local search can consistently outperform P-ACO
for dynamic combinatorial optimization problems.
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3. Extension of Rank-Based Ant System

This section presents the proposed extension of the Rank-based Ant System. Firstly,
the two contributions of the proposed algorithms are presented; (i) an originality utility
function and (ii) a pheromone smoothing mechanism that is triggered before the algorithm
reaches stagnation. Next, the proposed variant of the Rank-based AS algorithm is detailed,
highlighting the modifications with respect to the original Rank-based AS already described
in Section 2.

3.1. Originality Utility Function

With the objective of promoting exploration of the search space, this section presents a
utility function that measures the originality or dissimilarity of one solution with respect to
a group of solutions.

A way of measuring the distance dist(s, s′) between two tours s and s′ is to count
the number of arcs contained in one tour, but not in the other [14]. The average distance
between all possible pairs of tours can be used to measure the amount of exploration of
the algorithm, as a decrease in the average distance indicates that preferred paths are
appearing [14]. Alternatively, this distance definition (i.e., number of non-common arcs)
could be used instead for our purpose of measuring the originality of one ant tour with
respect to a group of tours, by considering the average distance of all the possible pairs
formed by the ant tour s and the rest of the ant tours. However, a disadvantage of this
measure is that it is computationally expensive [14].

The proposed originality function, given by Equation (9), is based on the idea that the
tours of those ants that traverse arcs that have been visited by a smaller number of ants are
more original. The originality function fo of an ant tour sk is given by the inverse of the
number of ants that have traversed each arc of sk, that is:

fo(sk) =
1

∑
arc(i,j)∈sk

νi,j
(9)

where νi,j represents the number of ants that have traversed the edge going from node i to
node j.

As an illustrative example, below are calculated the originality values given by
Equation (9) for each of the following five tours of a TSP problem with n = 10 cities.
The five closed tours are:

s1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1}
s2 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1}
s3 = {6, 7, 8, 9, 10, 1, 2, 3, 5, 4, 6}
s4 = {1, 8, 10, 9, 2, 3, 4, 5, 6, 7, 1}
s5 = {2, 9, 3, 6, 5, 8, 7, 10, 4, 1, 2}

To compute the originality values for each tour, we use the matrix ν corresponding to
the five tours:

ν =



0 4 0 0 0 0 0 1 0 0
0 0 4 0 0 0 0 0 1 0
0 0 0 3 1 1 0 0 0 0
1 0 0 0 3 1 0 0 0 0
0 0 0 1 0 3 0 1 0 0
0 0 0 0 1 0 4 0 0 0
1 0 0 0 0 0 0 3 0 1
0 0 0 0 0 0 1 0 3 1
0 1 1 0 0 0 0 0 0 3
3 0 0 1 0 0 0 0 1 0


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where each element νi,j indicates the number of ants that have traversed arc(i, j). For
instance, ν1,2 = 4 indicates that four ants (in this example, those associated with the tours
s1, s2, s3 and s5) have gone from node 1 to node 2.

According to the originality function given by Equation (9), the following values are
obtained: fo(s5) = 0.076 > fo(s4) = 0.045 > fo(s3) = 0.037 > fo(s1) = fo(s2) = 0.030.
These results are in accordance with what could be expected, since s1 and s2 are identical,
s3 and s4 have several arcs in common with s1 and s2, while tour s5 is the most different
(original) tour from the rest.

3.2. Pheromone Smoothing Mechanism

This section presents a pheromone smoothing strategy to escape from the stagnation
situation. For a better understanding of the stagnation situation, visual representations
of the pheromone trails obtained with ASRank when solving a TSP instance with 14 cities
after 0, 5, 10 and 200 iterations are shown in Figure 2. Note that the pheromone matrix is
a square matrix of dimension n× n, where n is the number of nodes (cities) and in this
TSP example, n = 14. Each element of the pheromone matrix τi,j contains the pheromone
quantity associated with the edge that goes from node i to node j. For the representations,
the pheromone levels are translated into gray scale, where black and white represent
the highest and the lowest pheromone trail values, respectively. At the beginning of the
algorithm, all the pheromone values are initialized with the same pheromone value τ0, with
the exception of the values of the diagonal representing no movement (i.e., i = j), which
are not allowed in TSP (and thus are represented in white in Figure 2).

After each ASRank iteration, all the pheromone trails are evaporated and some pheromone
trails are reinforced (the ones included in the w− 1 best tours of the iteration and the best-
found tour). The effect of this pheromone update can be observed in the pheromone
representations of Figure 2. Additionally, the symmetry along the main diagonal of the
pheromone matrix is due to the fact that the example is a symmetric TSP instance. As the
difference among the pheromone values increases, ants are more likely to choose those arcs
that were chosen by the best ants from previous iterations. This pheromone reinforcement
enables ASRank to explore promising regions of the search space obtaining high-quality
solutions in a reasonable time. Yet, this usually leads ASRank into early stagnation situations,
in which all ants follow the same path. Stagnation can be clearly observed in the pheromone
trails after 100 iterations shown in Figure 2 (right-bottom). In this case, the pheromone
encodes a unique path (only fourteen of all the possible elements of half of the pheromone
matrix have a non-negligible pheromone quantity). For this simple TSP instance with only
fourteen cities, the encoded path in the pheromone table happens to be the optimal one.
However, this is not usually the case and often ASRank is trapped into a local minimum.

The proposed pheromone smoothing mechanism, given by Equation (10), rescales
the pheromone trails to the range [γτ0, τ0], 0 < γ < 1. Note that if γ equals 1, all the
pheromones will be reinitialized to the constant value τ0, and previously learned informa-
tion would be lost.

τ = γτ0 +
τ −min(τ)

max(τ)−min(τ)
(1− γ)τ0 (10)

Figure 3 shows an example of the resulting pheromone trails of ASrank before and
after applying the pheromone smoothing strategy. The image on the left of Figure 3 shows
the pheromone trails when the algorithm is near a stagnation situation. The noticeable
difference among the pheromone values can be observed, leading to the construction of very
similar ant tours and thus a limited exploration of the search space. The image on the right
of Figure 3 shows the pheromone trails after applying the pheromone smoothing strategy,
where the pheromones are rescaled [0.1τ0, τ0] with τ0 = m/ f (ssb) [14]. It can be observed
that after applying the pheromone smoothing mechanism, the learned information is still
preserved, but the differences among the pheromone trails τi,j have decreased. In this way,
the diversity of the ant tours produced by the algorithm after the pheromone smoothing
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mechanism is increased, allowing the algorithm to escape from stagnation without losing
previously learned information.

Figure 2. A visual representation of the pheromone matrix: (left-right, top-bottom) the pheromone
values obtained with ASRank applied to the TSPLIB instance burma14 with 14 cities, after 0, 5, 10 and
100 iterations, respectively.

In order to incorporate the smoothing strategy into an ACO algorithm, it is also
necessary to define when the pheromone smoothing is triggered. For this purpose, it is
necessary to select a measure of how close the algorithm is to stagnation and based on
this measure, define a criterion that triggers the pheromone smoothing strategy. Several
measures can be used to describe the amount of exploration an ACO algorithm performs
in order to detect stagnation situations, such as the standard deviation of the length of the
tours, the average number of arcs that are not common in every pair of ant tours, and the
average λ-branching factor [14]. Despite these last two criteria being good indicators of
the size of the search space effectively being explored, they require a high computational
cost. For instance, the average λ-branching factor is used in [11] for triggering occasional
pheromone initialization of MMAS, but due to its high computational cost, it is only
calculated every 100 algorithm iterations. On the contrary, the standard deviation between
the fitness of ant’s tours is a more efficient way to measure the diversity among the
solutions generated at an iteration. The standard deviation, σL, of the ant tours of an
iteration decreases when the search starts exploiting a concrete region of the search space.
Additionally, in the case where σL reaches a null value, we can assume that all ants are
taking the same paths (as it is very unlikely that different tours have the same length)
and thus, σL = 0 is an indicator that the algorithm has fallen in a stagnation situation.
Due to its lower computational requirement, σL is the criterion selected for the proposed
ACO algorithm.
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Figure 3. Pheromone trails before (on the left) and after (on the right) of pheromone smoothing.

Lastly, it is worth clarifying the difference between the discussed dissimilarity func-
tions, which measure the dissimilarity of a group of ants tours, with respect to the originality
function presented in Section 3.1, which measures the dissimilarity between a unique solu-
tion with respect to several of tours. Additionally, while the former are generally used with
the intention of detecting the approach to stagnation situation, the latter is proposed with
the intention of promoting solutions that diversify the search.

3.3. Algorithm

Once the originality utility function and the pheromone smoothing strategy have
been introduced, below is described the proposed extension of Rank-based Ant System,
which incorporates both strategies. Algorithm 2 shows the pseudocode of the algorithm
and Figure 4 its general overflow. The algorithm requires similar parameters to ASRank:
pheromone evaporation rate ρ, the number of ants per iteration m, the number of ants that
deposit pheromones w, and the pheromone and heuristic influence parameters α and β.

The steps of the algorithm are the following. First, the algorithm starts with the
initialization of the pheromone table to a constant value τ0, and of the matrix ν to zero (as
νi,j accounts for the number of ants that have traversed each edge arc(i, j) in the graph G).
Within the main iteration loop, the tours of m ants are constructed component by component
according to the ACO probabilistic transition rule given by Equation (1). Additionally, in
line 7, the counter of ants νi,j that have traversed arc(i, j) is updated. Once the m tours
(s1:m) have been constructed, they are ranked and selected according to their fitness and
originality following the steps sketched in Figure 5 and explained as follows. First, all the
tours are evaluated and the (w− 1) best are selected (line 11). Then, the (w− 1) best tours
of the iteration are evaluated and ranked according to the originality utility function given
by Equation (9), obtaining in this way a rank of the dissimilarity of the (w− 1) best tours
with respect all the explored tours (line 13). Moreover, in the case that the best solution of
the iteration is better than the global best solution, sgb is updated (line 12). In line 14, the
pheromone update process takes place according to Equation (11); all pheromone values
are evaporated, and the (w− 1) best tours of the current iteration and the global best tour
are reinforced.

τi,j = (1− ρ)τi,j +
w−1

∑
ro=1

(w− ro)4 τr
i,j + w4 τ

gb
i,j (11)

The best-so-far tour gives the strongest feedback, as its contribution is multiplied by
the weight equal to w, the (w− 1) best ants of the iteration deposit a pheromone quantity
multiplied by a weight (w− ro), which is higher for the more original solutions (lower
ro). The update of the pheromones is similar to the original ASRank, with the exception
that the ranking considered for the reinforcement is a ranking of originality, instead of
fitness. In this way, the proposed algorithm rewards the originality of the tours with good
fitness values.
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Algorithm 2 ASRank with originality reinforcement and pheromone smoothing
Require: ACO parameters

1: τ ← initialise pheromone trails
2: ν← initialise matrix ν
3: while termination condition not met do
4: for k = 1 to m do . for every ant
5: for every step until the k-th ant has completed the tour do
6: select next node j according to the transition rule . Equation (1)
7: νi,j = νi,j + 1
8: (if symmetric) νj,i = νi,j
9: end for

10: end for
11: s1:(w−1) ← EvaluateAndSelectBest(s1:m) . select (w− 1) best ant tours
12: sgb ← SelectBest(s1, sgb) . update global-best solution
13: ro ← EvaluateOriginality(s1:(w−1), ν) . evaluate originality, Equation (9)

14: τi,j = (1− ρ)τi,j + ∑w−1
r=1 (w− ro)4 τr

i,j + w4 τ
gb
i,j . Update pheromones

15: (if symmetric) τj,i = τi,j
16: if approach stagnation then
17: pheromone smoothing . Equation (10)
18: end if
19: end while

Furthermore, at the end of each algorithm iteration, it is checked whether the algorithm
is entering a stagnation situation (line 16). The criterion considered for triggering the
pheromone smoothing strategy described by Equation (10) is when the standard deviation
of the fitness of the 80% of ants tours of the iteration is zero. Hence, the pheromone
smoothing is applied before the algorithm enters stagnation. Finally, once the termination
condition is met (maximum number of iterations) the algorithm returns the global best tour.

Furthermore, as in symmetric TSP instances, it is assumed that τi,j = τj,i ∀(i, j); ACO
algorithms ensure this by updating the symmetric pheromone element (line 15). Similarly,
in the case of symmetric TSP, νi,j counts the number of ants that have traversed either
arc(i, j) or arc(j, i) (line 8).

4. Experimental Results

This section analyses the performance of the proposed extension of Rank-based Ant
System. First, the evaluation methodology is described, including the utilized benchmarks
and the parameter settings. Next, the performance of the proposed ACO algorithm is
analysed and compared with AS, the original ASRank, and with MMAS and ACS, which
are widely considered the best-performing ACO algorithms according to multiple sources
(see, for instance, [14–16]).

4.1. TSP and SOP Benchmarks

The following combinatorial optimization problems are used during the analysis:

• Symmetric and Asymmetric Travelling Salesman Problem (TSP and ASTP) aim to find the
Hamiltonian cycle of minimum length given a graph with n cities. In case the distances
between the cities are independent of the direction of traversing the edges di,j = dj,i,
∀(i, j), the problem is known as symmetric TSP; otherwise—as asymmetric TSP.

• Sequential Ordering Problem (SOP) consists of finding a Hamiltonian path of the min-
imal length from node 1 to node n taking precedence constraints into account. The
precedence constraints impose that some nodes have to be visited before some other
nodes of the graph G.

The characteristics of TSP and SOP instances can be expressed by a distance matrix,
where each element di,j states the distance from node i to node j, or in SOP instances it may
be equal to −1, indicating that node j must precede node i. For instance, as SOP imposes
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that all tours start at node 1 and end at node n, dn,j = −1, ∀j. Additionally, in symmetric
TSP instances, the matrix is symmetric as di,j = dj,i, ∀(i, j).

Table 1 lists the relevant information about the instances used for the analysis: their
name, the type of optimization problem, the fitness of the optimal solution and the number
of nodes (dimension of the problem instance). These instances belong to the TSPLIB bench-
mark library [38], which is accessible at http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/ (accessed on 24 October 2022).

Table 1. Problem instances used in this paper for the experiments and analysis.

Instance Type Optimal Solution Dimension (n)

brazil58 TSP 25,395 58

kroA100 TSP 21,282 100

ch130 TSP 6110 130

tsp225 TSP 3916 335

gr48 TSP 5046 48

pr76 TSP 108,159 76

gr202 ATSP 40,160 202

ftv35 ATSP 1473 36

ftv64 ATSP 1839 65

ftv70 ATSP 1950 71

ESC78 SOP 18,230 80

ft70.1 SOP 39,313 71

p43.1 SOP 28,140 44

p43.4 SOP 83,005 44

4.2. Experimental Setup

Due to their stochastic nature, all ACO algorithms were run 30 times for each problem
instance. During each run, the length of the best-found solution at each iteration is saved.
This information is later used for comparing the performance of the algorithms by means
of comparative tables and evolutionary curves (see Sections 4.3 and 4.4 for details).

Regarding the parameter settings, typically recommended values, already used in
several previous studies, were selected [11,13,14,18]. The following pheromone and heuris-
tic influence parameters were set for all ACO algorithms; α = 1, β = 2. The number of
ants m was set equal to the number of cities n for all ACO algorithms with exception of
ACS, leading to good algorithm performance (see [14] for details). In the case of ACS, the
number of ants m per iteration was set equal to 10, as recommended in [12,14]. Regarding
the values of ACS-specific parameters, the following recommended values were considered:
q0 = 0.9, ξ = 0.1 [12,14]. Regarding Rank-based ACO variants, the following parameters
were considered: w = 6, ρ = 0.1 and τ0 = m/ f (sgb), also selected in previous studies [14].
Furthermore, in the case of MMAS, the evaporation parameter is set to ρ = 0.02, the
iteration-best solution is considered for pheromone reinforcement, and pheromone trails
reinitialization to τmax is triggered whenever no improved tour has been found for more
than 250 iterations [14].

With regard to the parameter settings of the proposed algorithm, the common param-
eters with ASRank are set with the same values for a fair comparison. Additionally, the
pheromone smoothing strategy rescales the pheromone table to [0.1τ0, τ0] whenever the
standard deviation of the lengths of the 80% of the ant tours of the iteration is zero. This
criterion was chosen empirically, after observing that in most of the cases, ASRank is not
able to find a better solution once 80% of the ants have followed the same path (i.e., have

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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the same fitness). The results of the analysis are shown in Table 2, where for each problem
instance, the number of simulations (from a total of 30 runs) is shown in which ASRank has
been able to find a better solution after different percentages d of solutions (from d = 10%,
20%, . . ., to 100%) have reached null standard deviation (i.e., after the d% of the ants have
had the same fitness). The objective of this analysis is to find a good balance, avoiding
applying the smoothing mechanism too late (wasting a lot of algorithm iterations with
little chance of improving the best solution found so far) or, on the contrary, applying the
smoothing mechanism too early (where the pheromone information could still be further
exploited to find a better solution). The results of Table 2 show that quite often, ASRank is
able to find a better solution after 10% of the m solutions have the same fitness, e.g., 22 of
the 30 runs for brazil58 instance, or 17 of the 30 runs in kroA100 instance. As we would
expect, the higher percentage of solutions considered, the closer it gets to a stagnation
situation and the harder it is for the algorithm to find a better solution. For instance, in the
case of brazil58, the algorithm was able to find a better solution in 22 of 30 runs after 10%
of the m solutions were the same, but only in 6 of the 30 runs after 30% of solutions were
the same, and after all the solutions were the same at some iteration, the algorithm was no
longer able to improve the best-found-solution in any of the 30 runs.

Table 2. Analysis of the number of times from the 30 runs that ASRank was able to find a better
solution after different percentages of solutions (ants) have reached null standard deviation.

Instance
Percentage (%)

10 20 30 40 50 60 70 80 90 100

brazil58 22 7 6 5 3 2 1 1 1 0

kroA100 17 12 9 7 4 3 3 2 2 1

ch130 18 11 8 6 5 4 3 3 3 0

tsp225 21 18 14 12 10 7 4 1 0 0

gr48 14 7 4 2 2 2 2 1 0 0

pr76 14 9 6 5 5 4 4 2 2 1

gr202 16 14 9 7 5 4 3 2 1 0

ftv35 18 14 10 7 4 4 4 3 3 3

ftv64 17 13 9 8 7 7 5 3 1 0

ftv70 21 15 5 4 2 2 1 1 0 0

ESC78 9 6 5 5 3 2 1 0 0 0

ft70.1 18 13 11 7 5 2 2 1 0 0

p43.1 15 12 8 6 6 5 3 2 1 0

p43.4 25 20 18 15 13 10 6 5 5 3

Moreover, for all ACO algorithms, a maximum number of iterations was considered
as a stopping criterion; 800 iterations for problem instances with dimensions lower than
100 nodes and 1200 iterations for bigger instances. Additionally, it is worth mentioning that
all implemented ACO algorithms do not consider local search, as the goal is to analyse the
performance of the proposed approach. Hence, the results obtained could be improved
by the consideration of local search strategies typically used for TSP (e.g., k-exchange
neighbourhood), see [11]. This will be part of our future work in the field (see Section 5 for
further details).

4.3. Analysis of the Proposed ACO Algorithm

With the purpose of analysing the benefits of the extended Rank-based Ant System
with originality reinforcement and pheromone smoothing, denoted onwards as ASps

ORank,
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with respect to the original ASRank, this section compares their performance over sev-
eral TSP and SOP instances. Furthermore, in order to analyse how each of the two new
proposed strategies contributes to the performance of the algorithm, we also analyse the
performance of the algorithm when only one of the two strategies is considered—either
with the originality reinforcement (denoted as ASORank), or with the pheromone smoothing
strategy (denoted as ASps

Rank).
The comparative results obtained by these four variants of Rank-based Ant System are

shown in Table 3 for the symmetric and asymmetric TSP instances, and in Table 4 for the
SOP instances. Both tables are organized in a similar way: the different instances are shown
in the first column; for each instance, columns 2–8 show: the algorithm used for execution
(second column), the mean length of the best-ant tours and its standard deviation over
30 independent runs of the algorithm (third and fourth columns, respectively), the fitness
of the best solution found by the 30 runs (fifth column), the average percentage deviation
of the solutions from the optimal solution given by PDavg = (Avg−Opt)/Opt · 100 (sixth
column) and the percentage deviation of the length of the best solution of the 30 runs
from the optimal solution, given by PDbest = (Best−Opt)/Opt · 100 (seventh column) and
computed according to [30], and lastly, the mean computational time over the independent
runs of the algorithms in seconds (eighth column). Furthermore, for each problem instance,
the best (lowest) average length tour (Avg.), best-found tour (Best), average (PDavg) and
best (PDbest) percentage deviation are highlighted in bold.

The comparative results show that the proposed Rank-based extension ASps
ORank clearly

outperforms the original ASRank, obtaining lower mean path lengths in all TSP, ATSP and
SOP instances. For example, in the case of the symmetric TSP instance ch130, ASRank
obtained a mean path length of 6235, which corresponds to an average percentage of
deviation from the optimal solution of PDagv = 2.04%, while ASps

ORank obtained a mean
path length of 6170 and PDagv = 0.98%. Moreover, for the same problem instance, the
fitness of the best solution found during the 30 runs by ASRank was 6169, which corresponds
to a percentage of deviation from the optimal solution of PDbest = 0.97%, while ASps

ORank
obtained a path length of 6136 and PDbest = 0.43%. Additionally, no significant differences
are observed between the computational times.

Additionally, several conclusions can be drawn from the analysis of the ASORank and
ASps

Rank variants. On the one hand, the results from Tables 3 and 4 show that the pheromone
smoothing strategy by itself (ASps

Rank) clearly improves the performance of the Rank-based
algorithm, showing better results than ASRank in all the problem instances. On the other
hand, the inclusion of the originality reinforcement strategy in Rank-based Ant System
showed an improvement in the results. ASORank variant obtained better results than ASRank
in 7 of the 12 problem instances, worse in 4 problem instances (brazil58, ch130, gr48 and
tsp95) and similar performance in (ftv35). However, the ACO variant that considers both the
originality reinforcement and the pheromone smoothing (ASps

ORank) obtained the best results
out of all considered algorithms in the majority of the 12 instances, (with the exception
of brazil58, kroA100 and p43.4 where ASps

Rank obtained better results). Therefore, we can
conclude that the originality reinforcement strategy is clearly beneficial when combined
with the pheromone smoothing strategy in the proposed ASps

ORank.
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Table 3. Results for symmetric and asymmetric TSP instances obtained by Rank-based ACO variants.
The best results for each problem instance are highlighted in bold.

Instance Algorithm Avg. Std. Best PDavg (%) PDbest (%) Time (s)

brazil58

ASRank 25,628 126 25,400 0.92 0.02 14
ASps

Rank 25,480 118 25,395 0.33 0 14
ASORank 25,677 124 25,400 1.11 0.02 13
ASps

ORank 25,487 121 25,395 0.36 0 15

kroA100

ASRank 21,683 252 21,306 1.89 0.11 45
ASps

Rank 21,357 100 21,282 0.35 0 45
ASORank 21,591 186 21,331 1.45 0.23 43
ASps

ORank 21,378 120 21,282 0.45 0 45

ch130

ASRank 6235 39 6169 2.04 0.97 120
ASps

Rank 6193 47 6141 1.36 0.51 120
ASORank 6241 48 6154 2.14 0.72 115
ASps

ORank 6170 33 6136 0.98 0.43 120

tsp225

ASRank 4026 31 3989 2.80 1.86 422
ASps

Rank 3949 23 3916 0.84 0 422
ASORank 4034 33 3978 3.02 1.58 407
ASps

ORank 3942 17 3916 0.65 0 424

gr48

ASRank 5117 40 5066 1.40 0.40 9
ASps

Rank 5104 35 5054 1.15 0.16 9
ASORank 5135 39 5074 1.76 0.55 9
ASps

ORank 5091 28 5049 0.88 0.06 11

pr76

ASRank 111,609 1064 109,392 3.19 1.14 60
ASps

Rank 110,357 1187 108,238 2.03 0.07 61
ASORank 111,507 810 110,100 3.10 1.79 60
ASps

ORank 109,922 900 108,159 1.63 0 64

gr202

ASRank 41,803 435 40,960 4.09 1.99 324
ASps

Rank 41,095 255 40,609 2.33 1.12 325
ASORank 41,602 340 41,022 3.59 2.15 317
ASps

ORank 41,056 228 40,554 2.23 0.98 328

ftv35

ASRank 1497 9 1473 1.65 0 5
ASps

Rank 1488 10 1473 0.98 0 5
ASORank 1497 11 1473 1.64 0 5
ASps

ORank 1483 11 1473 0.71 0 5

ftv64

ASRank 1867 21 1848 1.50 0.49 17
ASps

Rank 1859 8 1848 1.07 0.49 17
ASORank 1862 14 1839 1.23 0 16
ASps

ORank 1858 9 1839 1.05 0 17

ftv70

ASRank 2010 44 1957 3.10 0.36 21
ASps

Rank 1999 35 1957 2.49 0.36 21
ASORank 1989 30 1950 1.98 0 20
ASps

ORank 1989 37 1989 1.99 0.20 21

To sum up, we can conclude that ASps
ORank outperformed the original ASRank in the

fourteen problem instances thanks to both the pheromone smoothing and the originality
reinforcement strategies.
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Table 4. Results for SOP instances obtained by Rank-based ACO variants. The best results for each
problem instance are highlighted in bold.

Instance Algorithm Avg. Std. Best PDavg (%) PDbest (%) Time (s)

ESC78

ASRank 18,609 147 18,415 2.08 1.01 183
ASps

Rank 18,470 43 18,405 1.32 0.96 185
ASORank 18,584 158 18,380 1.94 0.82 185
ASps

ORank 18,460 69 18,300 1.26 0.38 192

ft70.1

ASRank 41,403 419 40,646 5.32 3.39 81
ASps

Rank 41,082 297 40,505 4.50 3.03 81
ASORank 41,053 331 40,529 4.43 3.09 80
ASps

ORank 40,768 341 40,092 3.70 1.98 81

p43.1

ASRank 28,333 107 28,220 0.69 0.28 21
ASps

Rank 28,255 65 28,220 0.41 0.28 21
ASORank 28,330 107 28,220 0.63 0.28 21
ASps

ORank 28,236 34 28,220 0.34 0.28 22

p43.4

ASRank 83,693 119 83,415 0.83 0.49 67
ASps

Rank 83,405 73 83,295 0.48 0.35 68
ASORank 83,620 120 83,405 0.74 0.48 67
ASps

ORank 83,416 113 83,265 0.49 0.31 68

4.4. Comparison with ACO Algorithms

The comparative Tables 5 and 6, and the evolutionary curves in Figures 6 and 7 show
the performance of several ACO algorithms: Ant System (AS) [9], Rank-based Ant System
(ASRank), [10], Max-Min Ant System (MMAS) [11], Ant Colony System (ACS) [12] and the
proposed extension of the Rank-based Ant System (ASps

ORank).
On the one hand, Tables 5 and 6 allow the comparison of the final solutions obtained

by the ACO algorithms, showing that ASps
ORank outperforms all analysed ACO algorithms,

including MMAS and ACS which are the most widely used and often best performing
ACO algorithms [14–16]. More concretely, ASps

ORank obtained better results than AS and
ASRank in all problem instances, better results than ACS in all instances with the exception
of brazil58, and better results than MMAS in all SOP instances, and all TSP instances with
the exception of ftv64 and ftv70, where both algorithms obtained similar results. Regarding
the computational times, ACS requires slightly longer computational times than the rest of
the algorithms.

On the other hand, the evolutionary curves of Figures 6 and 7, which represent the
evolution of the average best-found tour lengths along the number of tours constructed,
enable the comparison of the performance of the ACO algorithms along the runs of the
algorithms, and not just the comparison of the fitness of final solutions. Note that these
graphs allow to compare the performance of the algorithms at different iterations, but due
to the scale, the comparison of the fitness of the final solutions is better observed in the
comparative Tables 5 and 6.

The evolutionary curves of Figures 6 and 7 show that during the initial iterations, all
ACO algorithms outperform MMAS, which presents a slower convergence to high-quality
solutions. For example, at iteration 100 of the TSP instance brazil58, the mean percentage
deviations from the optimal solution of ASRank and ASps

ORank are, respectively, 1.26% and
1.6%, while MMAS clearly presents a higher error equal to 26.2%. The reason for the
observed behaviour is that, while MMAS relies on a high initial exploration of the search
space in order to finally converge to high-quality solutions, ASps

ORank maintains the rapid
convergence of ASRank and relies on search diversification of the originality reinforcement
and pheromone smoothing mechanism to improve the quality of the solutions. The be-
haviour of ASps

ORank can be especially beneficial in those optimization problems where the
available computational time is limited or not known beforehand, as its faster convergence
would return a significantly better solution if the number of iterations is restricted.
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Figure 6. Evolutionary curves of ACO algorithms for symmetric and asymmetric TSP instances.
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Figure 7. Evolutionary curves of ACO algorithms for asymmetric TSP instances (ftv64 and ftv70) and
four SOP instances.

To sum up the conclusions from comparative tables and evolutionary graphs, ASps
ORank

is able to find higher-quality solutions than AS and ASRank in all the problem instances and
in all except one instance when compared with ACS. Moreover, ASps

ORank showed a much
faster convergence than MMAS, while being able to reach better final solutions in most of the
problem instances.
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Table 5. Results for symmetric and asymmetric TSP instances obtained by ACO algorithms. The best
results for each problem instance are highlighted in bold.

Instance Algorithm Avg. Std. Best PDavg (%) PDbest (%) Time (s)

brazil58

AS 25,930 89 25,685 2.10 1.14 14
ASRank 25,628 126 25,400 0.92 0.02 14
MMAS 25,622 51 25,480 0.89 0.33 14
ACS 25,464 116 25,395 0.27 0 16
ASps

ORank 25,487 121 25,395 0.36 0 15

kroA100

AS 22,714 198 22,221 6.73 4.41 45
ASRank 21,683 252 21,306 1.89 0.11 45
MMAS 21,462 173 21,330 0.85 0.23 45
ACS 21,559 279 21,282 1.30 0 53
ASps

ORank 21,378 120 21,282 0.45 0 45

ch130

AS 6632 71 6482 8.54 6.09 120
ASRank 6235 39 6169 2.04 0.97 120
MMAS 6202 34 6127 1.48 0.28 121
ACS 6234 44 6145 2.03 0.57 145
ASps

ORank 6170 33 6136 0.98 0.42 120

tsp225

AS 4374 57 4166 11.69 6.38 424
ASRank 4026 31 3989 2.80 1.86 420
MMAS 3998 20 3962 2.10 1.17 420
ACS 4022 42 3929 2.72 0.33 504
ASps

ORank 3942 17 3916 0.65 0 424

gr48

AS 5227 36 5147 3.58 2.00 9
ASRank 5117 40 5066 1.40 0.40 9
MMAS 5103 35 5063 1.13 0.34 9
ACS 5095 35 5046 0.96 0 12
ASps

ORank 5091 28 5049 0.88 0.06 9

pr76

AS 115,664 793 113,911 6.94 5.32 60
ASRank 111,609 1064 109,392 3.19 1.14 60
MMAS 110,521 1027 109,271 2.18 1.03 60
ACS 110,157 1326 108,159 1.85 0 70
ASps

ORank 109,922 900 108,159 1.63 0 64

gr202

AS 45,746 482 44,368 13.90 10.48 327
ASRank 41,803 435 40,960 4.09 1.99 324
MMAS 42,004 413 41,331 4.59 2.92 327
ACS 41,646 340 40,720 3.70 1.39 387
ASps

ORank 41,056 228 40,554 2.23 0.98 328

ftv35

AS 1504 10 1487 2.11 0.95 5
ASRank 1497 9 1473 1.65 0 5
MMAS 1493 8 1473 1.39 0 5
ACS 1494 19 1473 1.45 0 6
ASps

ORank 1483 11 1473 0.71 0 5

ftv64

AS 1918 13 1902 4.31 3.43 17
ASRank 1867 21 1848 1.50 0.49 17
MMAS 1857 7 1854 1.00 0.815 18
ACS 1866 21 1842 1.85 0.16 21
ASps

ORank 1858 9 1839 1.05 0 17

ftv70

AS 2149 23 2051 10.20 5.18 21
ASRank 2010 44 1957 3.10 0.36 21
MMAS 1988 30 1950 1.95 0 21
ACS 2044 48 1967 4.83 0.87 25
ASps

ORank 1989 37 1954 1.99 0.20 21
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Table 6. Results for SOP instances obtained by ACO algorithms. The best results for each problem
instance are highlighted in bold.

Instance Algorithm Avg. Std. Best PDavg(%) PDbest(%) Time (s)

ESC78

AS 20,631 227 19,950 13.17 9.43 182
ASRank 18,609 147 18,415 2.08 1.01 184
MMAS 18,464 28 18,405 1.29 0.96 187
ACS 18,477 97 18,290 1.35 0.33 196
ASps

ORank 18,460 69 18,300 1.26 0.38 192

ft70.1

AS 44,110 469 43,221 12.20 9.94 81
ASRank 41,403 419 40,646 5.32 3.39 81
MMAS 40,903 441 40,192 4.05 2.24 81
ACS 42,562 715 41,014 8.27 4.33 87
ASps

ORank 40,768 341 40,092 3.70 1.98 81

p43.1

AS 28,776 64 28,615 2.26 1.69 21
ASRank 28,333 107 28,220 0.69 0.28 21
MMAS 28,258 57 28,220 0.42 0.28 21
ACS 28,461 88 28,245 1.40 0.37 24
ASps

ORank 28,236 34 28,220 0.34 0.28 22

p43.4

AS 84,218 115 83,950 1.46 1.14 68
ASRank 83,693 119 83,415 0.83 0.49 67
MMAS 83,514 130 83,360 0.61 0.43 67
ACS 83,601 146 83,270 0.72 0.32 69
ASps

ORank 83,416 113 83,265 0.49 0.31 68

5. Conclusions and Future Work

This work proposes an extension of the Rank-based Ant System that incorporates
originality reinforcement and pheromone smoothing strategies in order to avoid early
stagnation and improve the quality of the solutions. The performance of the approach is
analysed and compared with AS, ASRank, MMAS, and ACS, over TSP and SOP benchmarks
showing very promising results. Contrary to the occasional reinitialization of pheromone
trails employed by MMAS [14,17], the proposed algorithm relies strongly on search diver-
sification through frequent smoothing of the pheromone trails. Therefore, the promising
results obtained by the proposed approach are not due only to the pheromone smoothing
mechanism, but also to the use of the proposed criterion for triggering the pheromone
smoothing. Additionally, the comparative results show that the originality reinforcement
strategy helps to improve the quality of the Rank-based Ant System when it is combined
with the pheromone smoothing strategy. Together, they enable the proposed approach
to maintain the rapid convergence to high-quality solutions during the first iterations of
ASRank, in addition to reaching higher-quality solutions in the long run. These features can
be advantageous in those optimization problems where the available time for computation
is limited or not known beforehand.

In this regard, we consider as an interesting future research line the adaptation of the
proposed approach to dynamic optimization problems (where the search domain changes
over time). For example, the rapid convergence of the proposed ACO algorithm could be
advantageous in Dynamic TSP [14,39], where new cities can be added or removed during
run time and the new shortest tour after each transition should be found as quickly as
possible. We also consider the analysis of the proposed method with other combinatorial
optimization problems such as the Vehicle Routing Problem and different modifications of
the original TSP [14].

Other interesting potential extension of this work is its hybridization with local search
strategies and/or other metaheuristics for better performance. As previously indicated in
Section 4.2, the present method does not include any local search, since our primary goal is
to enhance the pure state-of-the-art ACO algorithms without the addition of other heuristics.
However, it has been remarked by several authors that adding sophisticated local search
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procedures to the ACO algorithms can improve their performance for certain problems
significantly [17]. In line with this, we plan to combine our method with different local
search strategies and analyse their performance for the TSP, SOP and other combinatorial
optimization problems. We also plan to compare the performance of our method with
other ACO implementations after they are all paired with those local search procedures,
under the premise that the superior behaviour of our method with respect to best ACO
performers without any local search should remain when the local search is added to all
methods in a similar fashion. Other interesting extensions are the comparison of this new
ACO algorithm with other powerful metaheuristics, such as genetic algorithms, particle
swarm optimization or differential evolution, as well as analysing whether the performance
of our method can be improved by its hybridization with some of those metaheuristics.
These ideas are all part of our plans for future work in the field.
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